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a b s t r a c t

Pollen-climate transfer methods are reviewed from a Bayesian perspective and with a special focus on
the formulation of uncertainties. This approach is motivated by recent developments of spatial multi-
proxy Bayesian hierarchical models (BHM), which allow synthesizing local reconstructions from
different proxies for a spatially complete picture of past climate. In order to enhance the pollen realism in
these models we try to bridge the gap between spatial statistics and paleoclimatology and show how far
classical pollen-climate transfer concepts such as regression methods, mutual climatic range, modern
analogues, plant functional types, and biomes can be understood in novel ways by refining the data
models used in BHMs. As a case study, we discuss modeling of uncertainty by introducing a new
probabilistic pollen ratio model, which is a simplified variation of the modern analogue technique (MAT)
including the concept of response surfaces and designed for later inclusion in a spatial multiproxy BHM.
Applications to fossil pollen data from varved sediments in three nearby lakes in west-central Wisconsin,
USA and for a Holocene fossil pollen record from southern California, USA provide local climate recon-
structions of summer temperature for the past millennium and the Holocene respectively. The perfor-
mance of the probabilistic model is generally similar in comparison to MAT-derived reconstructions
using the same data. Furthermore, the combination of co-location and precise dating for the three fossil
sites in Wisconsin allows us to study the issue of site-specific uncertainty and to test the assumption of
ergodicity in a real-world example. A multivariate ensemble kernel dressing approach derived from the
post-processing of climate simulations reveals that the overall interpretation based on the individual
reconstructions remains essentially unchanged, but the single-site reconstructions underestimate the
overall uncertainty.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Over the past century numerous approaches to paleoclimate
reconstruction have been made. Due to different types of proxy
data, different reconstruction methods, and spatially and tempo-
rally inhomogeneous distribution of paleo archives, obtaining
a coherent picture of past climate variability remains a complicated
task. In order to address this problem, we identify two common
goals when analyzing paleoclimate data, which are to:

� combine proxies for a spatially complete picture of past climate
in order to inform physical understanding of the climate
system in terms of dynamics and response to forcings; and
lwein).

All rights reserved.
� estimate the uncertainty in climate reconstructions, which is
naturally large due to the approximation of a complex proxy-
climate relation.

A significant advance in the attempt to provide a spatially
complete picture of past climate has been the development of
systematic climate field reconstruction methods, or CFRs. CFRs
were first developed from eigenvector/singular value empirical
orthogonal function (EOF) methods used in modern instrumental
climatology. In paleoclimatology, several variants of EOF-based
CFRs have been employed, primarily with annually resolved
proxy data (of multiple kinds) over the past two millennia: all use
the proxy information to estimate the temporal loadings of a trun-
cated basis set of the EOFs of the instrumental climate field of
interest to be reconstructed back in time. Once established through
direct (e.g. Luterbacher et al., 2004) or inverse regression rela-
tionships (e.g. Mann et al., 1998, 1999; Wahl and Ammann, 2007),
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these estimated loadings are then applied to the retained EOF
patterns (through the appropriate expansion formula for EOF
derivation) during both the instrumental and reconstruction
periods to form estimated values of the entire climate field,
conditional on the proxy information. A variant of this method uses
the regularized expectation maximization (RegEM) algorithm to
estimate the temporal loadings from the proxy information, and
then reconstructs the EOFs as described (e.g., Mann et al., 2009);
RegEM can also be used to impute the reconstruction field directly
(e.g., Rutherford et al., 2005; Smerdon et al., 2010). A closely-related
method forms a truncated basis set from the joint proxy-
instrumental cross-covariance for the same purpose in canonical
correlation analysis (CCA) (cf. Cook et al., 1994; Smerdon et al.,
2010). Although it is not a systematic field reconstruction method
per se, the point-by-point regression (PPR) method developed by
Cook et al. (2004, 2007, 2010) has been used successfully to
reconstruct fields of the Palmer Drought Stress Index (PDSI), a key
hydroclimate variable that integrates both temperature and
precipitation in a soil moisture model, in both North America
(2004, 2007) and Monsoon Asia (2010).1

CFR methods are a large step forward in reconstructing past
climate in a spatially completemanner, however in some cases they
have not been accompanied by systematic estimation of uncer-
tainty at the field level, as opposed to index values of regional,
hemispheric or global means (e.g., Luterbacher et al., 2004; Mann
et al., 2008, 2009). Mann et al. (2009) used the unexplained vari-
ability in the validation period multiplied by the calibration period
decadal variance at each grid cell as a measure of the squared
decadal standard error of reconstruction. Gebhardt et al. (2008)
present a different approach where a probabilistic data-based
method for local reconstructions is combined with a dynamic
constraint on the reconstructed climate parameter, which leads to
climatological fields being optimizedwith respect to both the proxy
data and to the prescribed dynamics in a statistically consistent
way. Wahl and Smerdon (submitted) apply a simplified version of
a technique for generating probabilistic ensemble draws of spatial
mean temperature reconstructions (Li et al., 2007) to one of the
truncated EOF CFR methods described above; thereby generating
ensemble draws of the estimated temporal loadings associated
with the retained EOFs and in turn yielding a probabilistic field
reconstruction ensemble for the target domain of western North
America. This method, while a valuable step forward, still under-
estimates the full uncertainty inherent in the reconstruction
process because it does not include a statistical model for uncer-
tainty in the proxy data. A more complete characterization of
uncertainty would involve developing such models and incorpo-
rating them into the reconstruction process, to which we now turn.

At the forward edge of these methods, with special focus on the
common goals of incorporating multiple proxies and quantifying
uncertainties in a rigorous manner, is, e.g., Li et al. (2010). They
developed a Bayesian hierarchical model (BHM) to reconstruct the
northern hemisphere mean temperature from different sources,
1 A number of criteria have been used to determine the retained EOF/CCA spatial
patterns; the reader is pointed to the above references and citations therein for
more information. It is important to note that stationarity of the retained EOF/CCA
basis set over time is a key assumption in the truncated EOF/CCA methods
described, along with the temporal stationarity of the proxy-EOF/CCA temporal
loading relationship. The former assumption has been examined in a paleoclimate
model simulation environment by Wahl and Smerdon (submitted), who found it
reasonable based on comparison of 11the20th century global temperature EOFs
1e5 to 17th century (coolest) and 20th century (warmest) EOFs 1e5. The entire-
grid RMSEs of these comparisons were larger than parallel comparisons to EOFs
1e5 generated from 1000 random-century draws only 8% of the time, concentrated
in global EOF2 (4%). Stationarity of point-wise proxy/PDSI relationships over time is
also assumed in the PPR method.
such as proxies with different temporal resolution as well as
external forcings such as solar irradiance, volcanic aerosols, and
greenhouse gas concentrations. Their method is applied to
synthetic climate data taken from a global climate model and
synthetic proxy data also derived from the simulation. Tingley and
Huybers (2010) provide an important extension to this approach by
reconstructing spaceetime temperature processes.

However, as mentioned, these methods have been applied to
pseudo-proxies. On the one hand, this is awell-justified and natural
approach to test the capability of a BHM for paleoclimate recon-
structions, as emphasized in the comments on Li et al. (2010) by
Cressie and Tingley. It allows estimating the characteristics with
respect to spatio-temporal processes before incorporating more
complex climate-proxy relations. Similar tests a have been per-
formed, e.g., by von Storch et al. (2009) where they compare three
different reconstructionmethods, the inverse regressionmethod by
Mannet al. (1998), a direct principal components regression, and the
composite plus scaling method, in the virtual reality of the ECHO-G
climate simulation. The result, that the methods display different
performance depending on the noise model and the size of the
pseudo-proxy network, shows that test-bed studies are an impor-
tant informative tool. This utility is confirmed in a growing body of
reconstruction simulation experiments (e.g., Smerdon et al., 2010).

On the other hand, additional uncertainty arises from the
question howwell the test-bed studies relate to the performance of
the same methods using real data. It should be noted that the way
pseudo-proxies are created provides a degree of caution to the
application of an assumption that test-bed results and real-data
results using the same method and targeting the same spatial
domain will necessarily strongly parallel each other, even if the
test-bed climate realistically represents the real-world climate. This
is an issue that needs to be addressed in applying these approaches
to fossil proxy data, including themain focus of this article, which is
on pollen. Although the aforementioned BHMs account for
different noise models, the underlying assumption is a linear
relation between proxies and temperature.We discuss the aspect of
linearization for a limited case in Section 3. However, glancing at
the large number of approaches to pollen-based climate recon-
struction, or so-called transfer functions (Section 2), it is obvious
that a linear link between pollen counts and environmental vari-
ables such as near surface temperature is not generally applicable
for pollen as a paleo-proxy. From these observations come the idea
and motivation for this study, which is to enhance the realism of
spatial hierarchical models for use of pollen proxies in paleoclimate
reconstruction.

The general challenge in pollen-based paleoclimate recon-
structions is that there is not a strong direct functional or mecha-
nistic relationship between pollen spectra and climatic variables.
This complexity arises because pollen production is affected by the
interaction of a large number of nonlinear processes. Let us
consider the ideal case of a single tree species and its dependence
on one climate parameter, e.g. average near surface temperature. In
a very simplified picture, onemight think of a unimodal response of
pollen counts on temperature, describing a maximum climatic
range with increasing pollen production toward optimum condi-
tions somewhere within. While this assumption appears to be
appropriate for the abundances of whole organisms (such as
chironomids, used in methods related to pollen-based paleoenvir-
onmental reconstruction), it should be noted that pollen produc-
tion is a sub-organism-level, secondary metabolic processdeach
grain containing the male gamete component of plant reproductive
biology. It includes irregularities like mast years, during which
plants produce heavy seed crops, while in other years there is no,
poor, or only moderate seed production. Furthermore, climate-
pollen relations exhibit a second order effect beyond vegetation
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differences: in some situations pollen production under stress, i.e.
at the edge of a plant’s climatic range, might even be higher than
average. We do not address tertiary effects on local pollen assem-
blages such as wind-drift, but a key process that needs to be
accounted for is plant competition, which makes it difficult to treat
different taxa independently. In addition, the combination of taxa
itself can be disturbed by cultivation of land, leading to so-called
no-modern-analogue situations. A concrete example is given in
Neumann et al. (2007) for the Eastern Mediterranean, which is
heavily prone to cultivation during the late Holocene.Wewill detail
the basic concepts of pollen-based climate reconstructions from
a more paleobotanical perspective in Section 2, but the brief
considerations above indicate how much pollen-based climate
reconstructions naturally involve multivariate, nonlinear processes
and considerable uncertainties.

Uncertainties in paleoclimate transfer methods can also be
understood from a more fundamental point of view. In climate
science and risk management the terms epistemic and aleatory
uncertainty are used (e.g. Troccoli et al., 2008). Epistemic uncer-
tainty follows from limited process knowledge or modeling capa-
bilities and relates to most of the problems addressed in the
previous paragraph. Aleatory uncertainty is given by the stochastic
nature of the climate system and its subsystems, atmosphere,
ocean, cryosphere, biosphere, and lithosphere, and hence is not
reducible. Using properties of one subsystem to deduce properties
of another subsystem, as is done by botanical-climatological
transfer methods for instance, naturally involves random
processes. This motivates the recent trend from a deterministic
point of view toward probabilistic methods where traditional
transfer functions are understood as joint or conditional probability
distributions (e.g. Kumke et al., 2004). A very natural framework to
deal with this point of view, i.e. various levels of random effects, is
a BHM, which leads to the objectives of this article. These new and
upcoming approaches, as mentioned above, are typically derived
from the perspective of spatio-temporal statistics, rather than from
pollen-based research, and there is therefore a need to re-consider
classical pollen-climate transfer functions (as far as this term still
holds) in the development of this wider, probabilistic perspective.

In Section 2 we discuss the background of pollen-climate
transfer functions in the context of a Bayesian framework in
order synthesize the existing approaches. A case study is given in
Section 3 by developing a probabilistic version of the pollen-ratio
method for potential inclusion in a spatial multiproxy BHM.
Finally we go beyond single-site reconstructions and analyze
uncertainty in reconstruction from three nearby lake sediment
records, by the means of ensemble post-processing (Section 4).

2. Probabilistic pollen-climate transfer methods

2.1. Bayesian framework

Thehistoryof pollen-climate transfermethodsdatesbackat least
65 years, leading to a number of different approaches. A general
synthesis is given inBartlein et al. (2010) andBirks et al. (2010). Since
most of the methods have been developed from a point of view
focused on the paleo archives, they often employ mechanistic rela-
tions or expectation values. In order to put these into the general
aimsof thispaper, inparticular toaccount for the stochastic natureof
both the climate and proxy systems, we discuss how far recent
approaches already involve a continuous formulation of random
effects (Schölzel, 2006; Garreta, 2010). For this purpose we intro-
duce three, and later four, multivariate random variables: the
climate variables C, such as averaged near-surface temperature,
annual precipitation, mean temperature of the coldest month, etc.;
the pollen spectra P, considered here as raw counts of, typically,
many pollen types (percentage and proportion representation are
also common representations of pollen data); and a set of parame-
ters Q that characterize the statistical model. Later we add an
optional random variable V to express the intermediate vegetation
step used by the different pollen-climate transfer methods.

In a general sense, the reconstruction problem is the joint prob-
ability density function [P,C,Q]. A well-known method to split this
complicated model into separate levels is a BHM (e.g. Li et al., 2010):

½P;C;Q� ¼ ½PjC;Q�½CjQ�½Q� (1)

where ½$j$� denotes the conditional probability density. The first
level in the hierarchy on the right-hand side of equation (1) is the
data stage [PjC,Q], which models the statistical relation between
pollen proxies and climate variables. The remaining two levels are
the process stage [CjQ],modeling the (spaceetime) climate process,
and the prior distributions [Q] (described in Section 2.7). The
numbered equations here are designed to conform with those
described in Li et al. (2010). The import of Bayes’ rule becomesmore
obvious when plugging the left-hand side of equation (1) into the
form [C,QjP]¼ [P,C,Q]/[P]. Since [P] is the marginal distribution of
the data, the Bayesian formulation of (1) can thus be stated as
½C;QjP�f½P;C;Q�, indicating how the joint distribution of climate
(the reconstruction target) and the model parameters, conditional
on the proxies, is proportional to the product of the data stage,
process stage, and prior distributions. Depending on the space-time
processes to bemodeled the specification of the different layers and
sampling from the posterior distribution can be complicated. We
omit detailed description here and refer to Li et al. (2010) and also to
Tingley and Huybers (2010) for an improved model with respect to
the spatio-temporal processes. Tingley et al. (2010) provide
a comprehensive description of the palaeoclimate reconstruction
problem using the language and tools of modern statistics.

As pointed out in the comments on Li et al. (2010), a BHM are is
a powerful tool to account for various sources of uncertainties, but
all these uncertainties have to be expressed through probability
distributions. Following Section 1, this especially applies to the data
stage. In terms of the purposes of this paper, the question can be put
in terms of how far [PjC,Q] can be represented by the existing
pollen-climate transfer methods.

For a more complete characterization of relevant uncertainties
let us introduce the additional vegetation step:

½P;V;C;Q� ¼ ½PjV;C;Q�½VjC;Q�½CjQ�½Q� (2)

where the dependence of pollen counts on climate is split into
the conditional density [VjC,Q], which describes the dependence of
vegetation (e.g. taxa, biomes, analogues, etc.) on climate, and
[PjV,C,Q] which characterizes the link between pollen and vege-
tation (cf. Sugita, 2007). Under the simplification that pollen
production is conditionally independent of climate given the
vegetation state, the density [PjV,C,Q] can be reduced to [PjV,Q].
The latter assumption requires that vegetation and climate are in
equilibrium, which is not necessarily true but is implicitly or
explicitly incorporated in several pollen-climate transfer methods;
as a corollary, it also means that short-term changes in climate that
do not affect the vegetation composition cannot affect pollen
productivity. Nearly all the following methods can be characterized
by the way this additional random variable V and the conditional
densities are defined, allowing a useful, general way of comparing
and evaluating the methods.
2.2. Regression methods (linear)

Some of the first mathematical transfer methods for using
pollen to reconstruct climate were linear multiple regression
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functions (e.g., Bernabo, 1981; Howe and Webb, 1983; Bartlein
et al., 1984), in deterministic inverse model forms with
stochastic errors C[ aþ bP0 þ ε, (P0 represents pollen abundances
of the taxa included in the model or transformations of these
abundances to linearize them in relation to a climate parameter of
interest). These models could exhibit high explained variability in
calibration (e.g., Bartlein et al., 1984; Gajewski, 1988; Bartlein and
Whitlock, 1993), but were found to be non-general across climate
and geographic space (e.g., Bartlein and Webb, 1985; Gajewski,
1988; Bartlein and Whitlock, 1993), potentially leading to
degrees of arbitrariness in terms of defining appropriate regions
for development of specific prediction equations (but see Bartlein
and Webb, 1985; Bartlein and Whitlock, 1993 for use of quanti-
tative analyses to define appropriate calibration regions) and
requiring an additional assumption that such spatial definitions
would hold over the relevant period of past being reconstructed
(cf. Bartlein et al., 2010). This temporal threshold itself could vary
in region-specific ways. For these reasons, and more generally
because the method “proved too cumbersome”, these kinds of
transfer relationships were abandoned (Bartlein et al., 2010). It is
interesting to note that some reconstructions developed by these
methods are largely corroborated using the new Bayesian gener-
alized linear model (GLM) framework presented below in section
3 (Wahl et al., in press, cf. Appendix), a result noted more gener-
ally by Bartlein et al. (2010). Classical prediction interval estima-
tion in this context is described in Howe and Webb (1983) and
good examples of its use in paleoenvironmental reconstruction are
in the same article and Bartlein and Whitlock (1993). A good
examination of conformance with/violation of the standard
statistical assumptions associated with this kind of regression
model is also provided in Howe and Webb (1983). Additional
description and examination of this and other regression-based
transfer methods, such as weighted-average methods, are pre-
sented in, e.g., ter Braak and Juggins (1993), Birks (1998), and
Bartlein et al. (2010).

In terms of the aforementioned BHM, the additional vegetation
step is omitted and a direct relation between pollen proxies and
climate variables is assumed. The implementation of a linear
regression into a BHMvia [PjC,Q] is straightforwarddat least for the
pollen-climate relationdwhereas the corresponding space-time
model can be complex. The assumption of a linear relation
between pollen counts and climate is actually used in the test-bed
studies by Li et al. (2010) and Tingley and Huybers (2010).
2.3. Indicator taxa and mutual climatic range

The indicator taxa approach dates back to Iversen (1944) and
Hintikka (1963) and is based on the concept of defining sub-
domains in a bivariate climate space, also known as envelopes, that
represent the bioclimatic range of a species. The climate recon-
struction is a graphical method based on the combination of taxa
existing in the paleo record, i.e. the overlap of all taxon-specific
climate ranges. Grichuk (1969) extended the approach to closed
subdomains and introduced the term mutual climatic range (MCR)
method. In order to relate the graphical method to the Bayesian
framework introduced above, the additional vegetation step is
expressed by the presence of plant taxa V¼ (V1,.,Vm) where the
corresponding pollen counts are required to be above a predefined
threshold pj:

½VjC;Q� ¼ Pj
�
Vj
��C;Q�

; for all jwith Pj>pj: (3)

The classical MCR method does not account for pollen counts
and hence [VjjC,Q] equals one where the taxon is present in the
climate space, e.g. obtained from the recent spatial distribution,
and zero otherwise. Furthermore, conditional independence for the
presence of different taxa given climate is assumed.

On the one hand, the graphical definition of the climatic ranges
as sharp boundaries does not allow for uncertainty estimates,
which occurs for two reasons. First, the original version of the MCR
method implicitly assumes discrete distributions, i.e., uniform
distributions in the univariate case. Second, these climatic ranges
may have an arbitrary shape, mostly indicating dependence on the
recent climate distribution, not only on the physical bioclimatic
range of the respective taxa. Enhancements of the MCR concept are
given by Pross et al. (2000) and Klotz et al. (2004), with so-called
probability mutual climatic spheres (PCS). These enhancements
address the common problem of non-overlapping mutual climatic
ranges for a high number of taxa, which is caused by the previously
mentioned overfitting of uniform distributions.

On the other hand, the approach can be extended by introducing
parametric probability densities of the taxon-specific likelihoods
[VjjC,Q]. Recent applications of the so-called probabilistic indicator
taxa approach or pdf method include bi- and tri-variate random
vectors describing winter temperature, summer temperature and
annual precipitation. The conditional probabilities [VjjC,Q] can be
estimated directly e.g., via generalized linear models (GLMs) with
polynomials of continuous covariates (Schölzel, 2006) or indirectly
via Bayes’ theorem [VjjC,Q]¼ [CjVj,Q][Vj,Q]/[C,Q]. In the latter
case, [CjVj,Q] is described by a Gaussian mixture model (Kühl et al.,
2002) or by a copula model (Kühl et al., 2007; Litt et al., 2009;
Schölzel and Friederichs, 2008) in order to allow for non-
Gaussian marginal distributions, e.g., precipitation values. Param-
eter estimates are typically obtained from taxonomic atlases
(Schölzel et al., 2002) and gridded climate data sets, following the
assumption of ergodicity, which means that the average long-term
state of the relation between a particular kind of vegetation and
climate at a single location is the same as its average state across
different locations at a single time (Dieckmann et al., 2000).

Thus, probabilistic versions of the classical indicator taxa or
mutual climatic range concept can be directly incorporated into Eq.
(2). Since this approach entirely neglects information about pollen
counts, it is comparably robust against the no-modern-analogue
problem (Neumann et al., 2007). This robustness arises from the
idea that the presence of taxa in the fossil sample is mainly
conditioned on climate and independent of other taxa (Eq. (3)).
Plant competition and other non-climatic effects may have
a stronger influence on pollen counts than on presence/absence
information. As a consequence, pollen percentages have first to be
transferred into presence/absence data by defining thresholds,
which might be difficult to determine on an objective basis and
with uncertainty estimates (Latalowa and van der Knaap, 2006).
Another effect of neglecting pollen counts is that the estimated
posterior distributions are typically wider than for other
approaches.

2.4. Modern analogues

The modern analogue technique (MAT) uses dissimilarity coef-
ficients, i.e. distance metrics in pollen space, to measure the
difference between fossil pollen samples and potential modern
analogue samples (cf. Overpeck et al. 1985; Gavin et al., 2003;
Jackson and Williams, 2004). Paleoclimate reconstructions follow
from theweighted averages of the climate at the recent pollen sites,
e.g. with the weights derived from the inverses of the distance
metrics, or from selection of the “best” analogue, defined to be the
modern sample that is the least dissimilarity distance from a given
fossil sample (the “nearest-neighbour” sample). Various dissimi-
larity coefficients have been studied, ranging from unweighted
coefficients, which are strongly influenced by large-valued pollen
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taxa, to equally weighted coefficients, which are more sensitive to
variations among rare taxa. The major strength of the MAT is, first,
that it uses information from many taxa in the multivariate pollen
spectrum (or in some cases the clearly dominant taxa, cf. Lytle and
Wahl, 2005), and second, that it is not limited to parametric taxon-
climate relations. However, an important limitation of the MAT is
that it cannot handle no-modern-analogue situations (Williams,
2003), and thus generally is likely to be of less and less value the
further back in time reconstruction is desired.

The problem of no-modern-analogues can be reduced to
a degree by introducing response surfaces (e.g., Bartlein et al., 1986;
Bartlein and Whitlock, 1993). A response surface is essentially
a smoothed representation of the pollen data associated with
a gridded version of the modern (uni- or multi-variate) climate
space used for analogue selection in the MAT. The surface can be
projected outside the envelope of modern climates, allowing
reasonable extrapolationdat least in the region “near” the known
modern climate-pollen space. The response surface method thus
can be viewed as a variant of theMAT that allows some potential for
extrapolation into no-analogue situations and that presumably
removes a significant amount of the spatial variability in the
modern pollen information that is non-climatic (Bartlein and
Whitlock, 1993).

In both the “straight” and response surface versions of the MAT,
a simple method to allow uncertainty estimation in the recon-
struction process is to define a k-nearest-neighbor (kNN) limit for
the number of analogs selected, as opposed to choosing the single-
nearest-neighbor analogue data point or location on the response
surface. Using the kNN limit, the weighted average climate value(s)
described above is (are) treated as the “expected value” climate
reconstruction and the weighted standard deviation(s) of this
(these) value(s) provide(s) a measure of reconstruction uncertainty.
Clear problems with this approach arise from the definition of the
nearest-neighbour limit, which can potentially remove useful
climatic information that might be contained in the non-selected
pollen assemblages, and also from the fact that the spread of the
climate value(s) of the selected analoguesmay be quite restricted or
quite wide simply due to the characteristics of the modern data set
used (Bartlein and Whitlock, 1993). The response surface method
can further restrict variability because it selects from smoothed
representations of the pollen-climate relationship, which can be
problematic if climate extremes are a desired target of recon-
struction (P. Bartlein, per. comm.).

A refinement of the MAT to deal with the kNN issue establishes
a cutoff value of the dissimilarity metric, below which good quality
analogues are defined to occur. A recent extension of this method
uses receiver operating characteristic (ROC) analysis to determine
optimizing cutoff values of the dissimilarity metric(s), explicitly
addressing the tradeoff between introducing false positives (Type I
error) and false negatives (Type II error) that necessarily occurs in
such situations (cf. Gavin et al., 2003; Wahl, 2004; Sawada, 2006).
In this implementation of the MAT, k is not a determined value,
with the exception that aminimumnumber of analogues needed to
reconstruct may be specified (e.g., Wahl, 2003), but rather repre-
sents the number of analogues below the determined dissimilarity
threshold for each fossil sample for which reconstruction is
attempted. No-modern-analogue situations occur when there is no
modern data point or location on the response surface within the
determined cutoff distance of the fossil samples of interest. It
should be noted that while this process objectifies threshold
selection and allows explicit consideration of the balance between
Type I and Type II errors (unless joint minimization of both errors is
chosen; cf. Wahl, 2004), it does not eliminate the problem that
estimated uncertainties can be strongly affected by idiosyncratic
characteristics of the modern data set. Another possibility
regarding analogue selection could be to simply eliminate ROC
optimization or ways of selecting a set value for k, and instead use
all potential analogues with a strongly declining weighting as
a function of increasing dissimilarity. Such a method could poten-
tially eliminate possible artefacts that might be introduced into
reconstruction by use of a specific threshold for analogue selection.
Examination of such a method in relation to the ROC optimization
process can potentially determine if it could extract more useful
climate information and eliminate more non-useful climate infor-
mation than ROC-determined thresholds. Additional examination
of the analytical choices involved in implementing the MAT in its
traditional form is provided by Sawada et al. (2004), Sawada (2006),
and Williams and Shuman (2008).

Gavin et al. (2003) use ROCmethods to evaluate several distance
metrics for analogue assignments, and then apply a simple
Bayesian statistical approach to examine posterior probabilities
that dissimilarity distances of a specific metric (squared chord
distance) are associated with particular vegetation-types (biomes,
see below) relative to all other vegetation types examined. For a full
probabilistic version of the MAT, the vegetation step V in Eq. (2) is
described as set of multivariate random vectors Vj in terms of the
pollen spectra of the modern analogues. By integrating out the
vegetation step, the posterior distribution follows as a mixture
distribution

½P;C;Q� ¼
X
j

�
PjVj;Q

��
Vj
��C;Q�½CjQ�½Q�; for all j¼ 1;.;m; (4)

where [VjjC,Q] represents the recent climate of the modern
analogue in a forward sense. It can be easily seen that [PjVj,Q] is the
probabilistic equivalent to the distance metric: the likelihood of the
fossil pollen spectrum P given the modern spectrum Vj.

A hierarchical Bayesian formulation of theMAT that includes the
concept of response surfaces is already used in Haslett et al. (2006).
Their approach relates to the Bayesian response models by Vasko
et al. (2000), Toivonen et al. (2001), and Korhola et al. (2002),
which have been developed for direct whole-organism-based
reconstructions, not pollen proxies. The likelihood [PjVj,Q]
follows a multinomial distribution [PjVj

*] where the pollen spectra
of the analogues Vj are replaced by the event probabilities Vj

*.
Consequently, [VjjC,Q] is replaced by a Dirichlet distribution [Vj

*jFj]
with expected values Fj, which is a practical choice as it is conju-
gate to the multinomial. By using a smooth function of climate for
the expected values Fj(C), which is obtained from the modern
analogues Vj, the approach can be understood as the Bayesian
version of the classical response surface technique.

It is important to note the clear multimodality (one global
maximum and up to several local ones) exhibited in the posterior
climate reconstructions by Haslett et al. (2006; cf. their Fig. 8) for
the test site at Glendalough, Ireland. This outcome highlights a key
issue in pollen-based paleoenvironmental reconstruction: it arises
as an artefact of the interaction between the lack of species-specific
pollen morphology for many pollen types and the wide spatial/
climatological range of the modern pollen assemblages used in
formulating Haslett et al.’s response surface model. The authors
comment explicitly on this outcome, noting as an example thewide
climatological range associated with Juniperus-type pollen in the
modern data set; this pollen type cannot be further distinguished at
the sub-generic level, yet it incorporates eight species that range
from Arctic to Mediterranean environments in Europe. Relatively
high proportions of Juniperus pollen in the fossil archive at Glen-
dalough at certain times during the reconstruction period then
necessarily lead to multimodal reconstruction outcomes e thereby
reflecting the inherent uncertainty in the climate-pollen relation-
ship created by the pollen morphology constraints. A classical
approach to eliminate this problem in pollen-based
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paleoenvironmental reconstruction is to limit the spatial range of
the modern data used for reconstruction to that nearer the sits(s) to
be reconstructed and/or across well-established bio-regional
boundaries (e.g., Williams and Shuman, 2008). However, this
approach does not necessarily eliminate the problem; e.g., in
mountainous regions distinct plant species with identical pollen
morphologies but different environmental ranges can have modern
ranges quite near each other (Wahl, 2002). More generally, such
limitation necessarily involves a (lesser or greater) amount of ad
hoc decision-making regarding appropriate spatial boundaries, and
by construction operates against the goal of making very generally
applicable reconstruction models.

The pollen ratio model introduced in Section 3 is also a special
case of the MAT that includes the concept of response surfaces.
With the assumption of a binomial response, it is the equivalent of
a multinomial in a reduced bivariate pollen space. In relation to
response surfaces, the logistic link function provides the smoothed
relation to the climate of the modern analoguesdalbeit for a more
limited climatic range.

2.5. Plant functional types and biomisation

Plant functional types (PFTs) are defined as groups of taxa with
similar biological characteristics such as leaf form, habit, phenology,
or bioclimatic range (e.g. Prentice et al., 1992, 1996). Each pollen
taxon can be empirically assigned to at least one PFT. The affinity of
a recent or fossil pollen sample with each PFT is then measured by
an “affinity score”, which is the sum of the square roots of all pollen
percentages above predefined thresholds defined into each PFT.
Similar to the distance metrics in the MAT, transformation by the
square root and use of a threshold have been introduced to increase
the signal-to-noise ratio of the affinity scoring process. A biome is
a more general classification and defined as a combination of PFTs.
Hence, the biome affinity score is calculated from the sum of the
corresponding PFT scores. Climate reconstructions can in turn be
obtained by mapping PFTs (or biomes) to bioclimatic ranges. For
instance, Peyron et al. (1998) and Tarasov et al. (1998) employ
artificial neural networks (ANN) to estimate the relationships
between the PFT scores of modern pollen spectra and the climatic
parameters estimated at the modern pollen sites.

The concept of PFTs and biomes is another way to enhance the
realism of spatial hierarchical models for pollen proxies. With
respect to the probabilistic framework above, the vegetation step V
is expressed in terms of PFT or biomes, e.g., the presence/absence of
a PFT derived from its affinity score. Following a Bayesian formu-
lation of a biome-based climate reconstruction (Schölzel, 2006),
equation (2) thenwould have the same general form as equation (4)
for the MAT, reading

½P;C;Q� ¼
X
j

�
PjVj;Q

��
Vj
��C;Q�½CjQ�½Q�; forall j¼ 1;.;m (5)

with the vegetation step again integrated out. As in the case of
MCRs, the PFT-climate relation [VjjC,Q] can be estimated, e.g., by
a GLM with binary response, logistic link, and polynomials of
continuous covariates, which is equivalent to a feedforward single-
layer ANN. The pollen-PFT relation [PjVj,C,Q] can be derived from
the affinity scores and hence simplified to [PjVj,Q], so that pollen is
assumed to be directly determined only by vegetation.

The freedom of choice in defining the affinity scoresdwhich can
be compared to distance metrics and analogue assignments in MAT
(e.g., Gavin et al., 2003)dand their interpretation as probabilities is
problematic: differing definitions can affect uncertainty evaluation
and are not derived from general statistical principles, such as use
of the multinomial and Dirichlet within a more general MAT
framework. Gachet et al. (2003) and Gritti et al. (2004) introduce
a probabilistic approach to the use of pollen indicators for plant
attributes and biomes, where affinity scores are replaced by prob-
abilities, but a strict BHM formulation would require that all
uncertainties have to be expressed through parametric probability
distributions. A possible solution would be to define Vj as a multi-
variate random vector Vj and [PjVj,Q] as multinomial and Dirichlet,
formally identical to Bayesian versions of the MAT above (Section
2.4). To our knowledge such an approach has not been applied to
PFT or biomes so far.

2.6. Process-based vegetation models

Process-based vegetation models simulate the quantitative
properties of PFTs in dependence on various environmental
parameters like climate, soil properties, and atmospheric CO2
content. Typical representatives are BIOME3 (Haxeltine and
Prentice, 1996) or BIOME4 (Kaplan et al., 2003), which are equi-
librium models. Dynamic vegetation models like the LPJ-GUESS
model (Smith et al., 2001) also take into account competition and
mortality. An advantage of dynamic vegetation models is that they
allow simulation of a process-based vegetation history, whereas
most of the methods described above implicitly assume temporal
independence in the fossil pollen samples. This advantage further
incorporates the ecological reality that climate and vegetation do
not necessarily have to be in equilibrium, as state-of-the-art
vegetation models account for competition, growth, and
mortality. Since process-based models are forward models, paleo-
climate reconstructions are obtained by inversion (Guiot et al.,
2000). A description of vegetation modeling and Bayesian inver-
sion is given in Guiot et al. (2009).

Themodel inversion is closely related to the framework above. A
major difference is that a fixed mechanistic model is applied to
random draws from the climate parameter space to generate the
posterior distribution. In contrast, the methods above treat the
model parameters as random variables as well, i.e. including their
stochastic uncertainty. Garreta et al. (2010) introduce an important
change toward this direction by treating the vegetation step as
random variable. However, since the inversion of a dynamical
vegetation model is already numerically complex, additional
parameter inference related to incorporating the vegetation model
into a large spatio-temporal BHM is probably not feasible at the
current stage of development. With respect to the overall focus of
enhancing the pollen realism in a multiproxy BHM framework,
posterior probabilities from processed-based vegetation models
could be incorporated by an empirical Bayesian approach.

2.7. Selection of prior distributions

Finally, the selection of prior distributions should be briefly
addressedhere, sincepriors areused invariousways inpaleoclimate
reconstruction and with a profound effect on the interpretation of
the results obtained. Every calculation of a posterior probability or
probability density directly depends on the selection of the corre-
sponding prior probability or probability density (Eqs. (1) and (2)),
so that posteriors are only interpretable in the context of priors. As
the priors have tobe given in advance, the conceptof Bayes’ theorem
refers to “learning from data”, transforming prior knowledge into
posterior knowledge. The posterior distribution can be seen as
a compromise between data and prior information (Gelman et al.,
2003). For instance, in case the posterior is identical to the prior,
there is no information contribution from the data, i.e., the likeli-
hood functionwhich incorporates information from the data (e.g., in
section 2.4 on the MAT, [PjVj,Q] is the likelihood of the fossil pollen
spectrum P given the modern spectrum Vj) could be replaced by
a uniform distribution.
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In a sensitivity analysis on the selection of prior distributions in
Bayesian paleoclimate temperature reconstructions Erästö and
Holmström (2006) demonstrate how crucial the selection of
a prior probability distribution for the past values can be, partic-
ularly when the data are noisy and the statistical model used is
complex. Highly informative prior distributions, for example
modern temperatures in the prior parameters of past tempera-
tures, as in Toivonen et al. (2001) and Korhola et al. (2002), can to
a large extent prescribe the reconstructed temperature (Erästö and
Holmström, 2006). Although imposing strong prior beliefs is
consistent with Bayes’ theorem, the practical use is open to
question as it will be difficult to interpret the results in a broader
sense.

Hence, we propose to use non-informative priors on the
reconstructed variable whenever possible or restrict to physically
plausible constraints only (e.g. Neumann et al., 2007), in order to
maximize the information in the posterior that comes from the
data or to indicate that the data do not have strong information
content. Moreover, MCMCmethods require that a prior distribution
is specified for each parameter. Finding proper prior distributions
for all model parameters can be a complicated task. Since there is
a vast field of literature on this topic, a description is omitted here
and we refer to e.g. Gilks et al. (1995) for details.

An alternative use of priors, which underlines the idea of
Bayesian learning, is shown in Garreta et al. (2010) by using
posterior distributions from other reconstruction methods in order
to test for improvements of a new model with respect to this
reference model. In that light, it should be noted that by definition
the prior information has to be independent of the data used in the
likelihood/data stage; i.e., the reference model has to be built on an
entirely different data set.
3. Case study of the pollen-ratio model

3.1. Method

As mentioned in section 2.4, we introduce here a simplified
variation on the MAT that includes the concept of response
surfaces, using a generalized linear model (GLM) with binomial
response and logistic link function. This statistical formulation is
well-expressed theoretically in that pollen count data P ¼ ðP1; P2Þ
for two groups of taxa of the form Pi ¼

P
jPij for the individual taxa

j in group i are binomially distributed, conditional on additional
covariates and the overall pollen sum across taxonomic groupings.
The name pollen-ratio model originated from an alternative but
equivalent description by using the ratio P1=ðP1 þ P2Þ conditional
on the included count values’ sum. The logistic formulation of the
modeled climate-to-pollen relationship is both physically and
mathematically appropriate. It is a forward model, expressing the
physically correct direction of causation and the binomial param-
eters and/or ratio values are constrained by construction to be
limited to the range [0,1]. Once a relation of this kind is estimated
on modern data using Bayesian (or classical) GLM methods, it can
be inverted and used with fossil pollen data for paleoclimate
reconstruction. Moreover, and importantly, the Bayesian posterior
distributions of the GLM parameters coupled with the binomial
distribution of the fossil pollen count values allow explicit statis-
tical characterization of uncertainty via a two-way Monte Carlo
random draw process. Taxonomic specification and classical esti-
mation of the model using data for northeastern North American
forest ecosystems is provided in Wahl et al. (2010), cf. included
SOM; modern pollen data are from Whitmore et al. (2005). A
summary and Bayesian estimation is provided here.

The modern data forward model is:
Pm1 jNm;pwBinðNm;pÞ
Pm2 jNm;pwBinðNm;1� pÞ

p ¼ logit�1ðaþ bCmÞ
Here, Pm ¼ ðPm1 ; Pm2 Þ are the modern-site pollen counts for the two
groups of taxa, Pmi ¼ SjPmij for the taxa j in each group i;
Nm ¼ Pm1 þ Pm2 is the overall pollen count; and Cm is the climate
value at each modern data site corresponding to a specific set of
pollen counts.

In a first step, random samples of the GLM parameters a and
b are drawn. This can be done by either Bayesian or by classical GLM
methods, for example using parametric distributions and
maximum likelihood estimates ba and bb including their standard
deviations. In the following, we especially focus on posterior draws
of ~a and ~b from a Bayesian GLM (Hadfield, 2010). Reasonably flat
standard prior distributions with zero mean and a variance of 108

were chosen for the GLM parameters.
In a second step, inversion is done by solving the GLM equations

for the climate variable C as a function of a, b, and the binomial
parameter p. Note that this solution is in terms of the modern
values of the climate variable used to estimate the GLM, and not in
terms of paleoclimate values, which in strict terms comprise
a separate variable. To interpret this solution in terms of paleo-
climate, the inversion model needs to be re-expressed as follows,
where Cf denotes the reconstructed climate, ~a and ~b denote
random draws from the first step, and Pf ¼ ðPf1; P

f
2Þ denotes fossil

pollen information:

Cf ¼
�
logit

�
~pf

�
� ~a

�.
~b

~pf

���PfwBeta
�
1þ Pf1;1þ Pf2

�

In order to use this form, the binomial parameters ~pf are drawn
from the beta distribution, which naturally provide the posterior
probability of this parameter after observing Pf1 “successes” (reali-
zation of the first group of taxa) and Pf2 “failures” (realization of the
second group of taxa). Note that the mode ~pf is given by the fossil
data ratio Pf1=ðP

f
1 þ Pf2Þ. Under this assumption, the above formulas

yield the random draws of reconstructed paleoclimate, given the
observed fossil pollen counts and the posterior draws of the GLM
parameters.

More generally, Cf is a random variable with three components
of stochastic variation: ~a, ~b, and ~pf . The first two components of
variation, defined by the joint posterior distribution of a and b, arise
from the randomness in the modern pollen ratio-temperature
relationship modeled by the binomial-logistic GLM, which is also
assumed to hold during the reconstruction time period. The third
component of variation arises from the fact that measured values of
Pf from a sediment core are in fact a draws from a stochastic
distribution of pollen counts that can reasonably be assumed to
occur across the depositional environment during an examined
time step. Thus, the randomness of the binomial parameter can be
modeled as a beta process in which the observed fossil ratio is
assumed to asymptotically represent the binomial parameter. Note
that the beta distribution and the binomial distribution are each
special cases of the Dirichlet distribution and the multinomial
distribution, respectively, which links the pollen ratio model to
probabilistic versions of the MAT with continuous responses. (c.f.
Section 2.4).

3.2. Results and comparison to MAT

Application of the inverted Bayesian binomial GLM model to
fossil pollen data from varved (annually-laminated) sediments in



Fig. 1. Reconstruction of summer (JJA) surface temperature in central North America over the past millennium, based on pollen preserved in varved sediments at Ruby Lake, Little
Pine Lake, and Dark Lake, Wisconsin, USA. Blue shading shows the estimated probability density for temperature; dashed/dotted lines indicate the 95/99% probability ranges of the
reconstructions; the red dot represents the modern long-term mean (1961e1990) in the vicinity of the lakes; the smoothed (dashededotted) line is a lowess fit of the ensemble
median reconstruction (solid line). (Cf. Wahl et al., in press.)
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three nearby lakes in west-central Wisconsin, USA (Gajewski et al.,
1985), is shown in Fig. 1, for reconstruction of mean summer
(JuneeJulyeAugust) temperature. For these three basins, the
modern summer temperature climatology values (1961e1990;
from Whitmore et al., 2005) are well inside the 95% probability
ranges of the inversion reconstructions (cf. Fig. 1), which provides
a minimum validation test for the methodology, and is coupled
with high explained deviance (analogous to explained variation in
linear models) of the modern pollen fit (0.79, from a classical fit of
the GLM to the same data for reconstruction of mean July
temperature;Wahl et al., 2010, SOM).2 The high explained deviance
of the model yields reconstructions whose 99% probability ranges
allow clear distinction of a cooler Little Ice Age (LIA) in relation to
both earlier (Medieval Climate Anomaly, MCA) and later times (by
w1.5�, compared to a mean 99% reconstruction probability range
�w� 0.45�). This overall interpretation using the information from
the three lakes individually remains essentially unchanged when
the estimated probability distributions from the individual lakes
2 Where both the numerator-specific taxa, Betula (birch) and Picea (spruce), and
the denominator-specific taxa, Quercus (oak) and Carya (hickory), are represented
above trace levels in the pollen spectra so the model could be reasonably evaluated,
the inverted GLM ratio model was employed with high-resolution fossil data over
the last 1,000 years from other lake basins in temperate northeastern North
America. The modern climatology values for these three basins lie far outside the
derived 99% probability ranges, and thus this information was not considered
validated. This situation could be due to ecological differences between forests in
the region of the three west-central Wisconsin lakes and those in the regions of the
other lakes (cf. Gajewski et al., 1985), which reduce or perhaps negate the validity of
the specified taxonomic model for use at those sites. Similar region-specific
reconstruction success and other issues using pollen-based regression models (cf.
section 2.2 above) are discussed in Bartlein et al. (2010), cf. section 2.3 in that
article.
are combined through application of ensemble post-processing
methods (cf. section 4 below) (Fig. 6). The most likely excursion
of LIA cooling in the combined case reduces tow1.0� and the width
of the overall 99% probability range expands to a maximum of
w�1.15 �C (it is generally�� 0.85 �C).Wahl et al. (in press) provide
a detailed examination of this reconstruction from a paleoclimatic
perspective, which is beyond the scope of the current article:
including timing of the onset of LIA cooling (in terms of the rapidity
of pollen response to temperature changes), and themeaning of the
early (MCA) portion of the reconstruction in terms of a possible
modern analogue analysis related to larger-scale atmospheric
circulation regimes (pressure and drought).

A second application of the inverted Bayesian binomial model to
a much longer (full Holocene) fossil pollen record from southern
California, USA (Wahl, 2002, 2003) has also been done, and the
results compared to an ROC-optimized MAT reconstruction from
the same data (Wahl, 2002, 2003, 2004). GLM estimation for July
mean temperature is shown in Fig. 2, and both the GLM-inversion
and MAT reconstruction results are shown in Fig. 3. In comparison,
there is more variability in the GLM-based reconstruction, with
narrower comparable probability ranges, but the “overall picture” is
the same across the two reconstructions: both indicate strong
apparent coolness just after the end of the Younger Dryas/begin-
ning of the Holocene (or perhaps indistinguishable from this
transition depending on the length of a possible lag of vegetation
response to climate change; cf. Wahl et al., in press) and temper-
atures generally near today’s since then (with some variability over
time). It is worth noting an advantage of the GLM ratio-based
reconstructions shown by this comparison; the model can
generate reconstructions in cases when there were judged to be too
fewmodern analogues to reconstruct (lowest brown data point and
gap-filling blue data point in right panel of Fig. 3). It should also be



Fig. 2. Binomial-logistic GLM fit for July mean temperature for the mesic (western) side of the coastal southern California mountains. The region and modern pollen-climate data
sites used in the estimation are shown in the far-left panel (note the USA-Mexico border, 32� 320 N at the adjacent Pacific Ocean, in the lower part of the panel). Darker blue/darker
red dots for the sites indicate cooler/warmer modern temperature; arrows note the sites of the fossil data used in reconstruction, shown in Fig. 3 (w1440 m elevation, brown;
w2400 m elevation, blue). The marginal posterior distributions of a and b (solid lines; dashed lines show comparable distributions from classical estimation) and their strongly
linked relationship are shown in the three centre panels. The scatter diagram of pollen ratios [(all conifers)/(all conifersþ oakþ important shrubs)] vs. July T and fitted modal
Bayesian logistic curve (solid line) are shown in the far-right panel (classical fitted EV curve is shown by the dashed line). The explained deviance (from classical fit) is 0.79.
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noted that the probability ranges estimated from the inverted GLM
model would almost certainly be significantly wider if multiple
nearby fossil deposition sites were available for reconstruction and
ensemble post-processing of the individual reconstruction distri-
butions could be done as in the case of the three Wisconsin lakes
mentioned above (cf. section 4 below).

A disadvantage of the GLM-inversion reconstruction method as
described and employed here is that it cannot be used simulta-
neously to reconstruct more than one climatic variable; whereas
the MAT method to which it is compared can reconstruct multiple
variables simultaneously, based on the general MAT assumption
that the environmental conditions associated with the selected
modern analogue pollen sites should be similar to those of the fossil
sites reconstructed. An example of the alternative use of the GLM-
inversion model to fit and reconstruct Holocene annual precipita-
tion in southern California (rather than temperature) is presented
Fig. 3. Reconstruction of July surface temperature over the Holocene (based on pollen pr
reconstruction from Wahl (2002) is shown at left; GLM-inversion reconstruction reported
shrubs)] is shown at right (cf. Fig. 2). The blue and brown reconstructions are from the two
shown. Vertical line indicates modern climatology (0� anomaly) at the two sites. Estimated 6
modern data sites in very near proximity to the fossil data sites are shown by open diamon
(2002); “BP” indicates years before CE 1950.
in Figs. 4 and 5, and compared to the Wahl (2002) MAT-based
reconstruction in Fig. 5.

It should be noted in the case of precipitation that the require-
ment of reasonable reconstruction of modern conditions is not met
for the GLM-based reconstructions, and thus the comparison with
the MAT-based reconstructions is potentially not as meaningful as
that shown for July temperature. However, unlike the situation for
the lakes in northeastern North America mentioned above, in
which possible ecological differences among forests in this larger
region could potentially reduce or negate the validity of the specific
taxonomic model used, the offset in the much more spatially-
restricted southern California case can be directly attributed to an
unavoidable effect of the GLM estimation procedure. This effect
occurs because both fossil sites and their very nearby modern data
sites represent relatively extreme cases of the climate-pollen rela-
tionship for their kinds of vegetation in the modern data set; the
eserved in wet meadow sediments) in southern California, USA. ROC-optimized MAT
in this article [based on pollen ratios of (all conifers)/(all conifersþ oakþ important
sedimentary fossil sites noted in left panel of Fig. 2, with temporal data coverages as

7% (“one sigma”) probability ranges of reconstruction are indicated. Reconstructions for
ds. Timing of fossil pollen samples is based on calibrated 14C dating reported in Wahl



Fig. 4. Binomial-logistic GLM fit for annual precipitation for the mesic (western) side of the coastal southern California mountains. The region and modern pollen-climate data sites
used in the estimation are shown in the far-left panel (note the USA-Mexico border, 32� 320 N at the adjacent Pacific Ocean, in the lower part of the panel). Darker blue/darker red
dots for the sites indicate lower/greater modern precipitation; arrows note the sites of the fossil data used in reconstruction, shown in Fig. 5 (w1440 m elevation, brown; w2400 m
elevation, blue). The marginal posterior distributions of a and b (solid lines; dashed lines show comparable distributions from classical estimation) and their strongly linked
relationship are shown in the three centre panels. The scatter diagram of pollen ratios [(all conifers)/(all conifersþ oakþ important shrubs)] vs. annual precipitation and fitted
modal Bayesian logistic curve (solid line) are shown in the far-right panel (classical fitted EV curve is shown by the dashed line). The explained deviance (from classical fit) is 0.33.
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higher-elevation “blue” site has low precipitation for highly conifer-
dominated forest sites and the lower-elevation “brown” site has
quite high precipitation for mixed conifer-oak forest sites (Wahl,
2003). Thus, it is possible to predict in this case that the GLM-
based reconstructions will tend to over-reconstruct/strongly
under-reconstruct modern climatology at the higher/lower sites,
respectively, which is what the results show in Fig. 5.

With this set of caveats in mind, the “overall picture” is similar
across the two kinds of precipitation reconstructions for the higher-
elevation site, especially when the systematic positive offset in the
reconstructions of the related modern sample sites is taken into
account. For the lower-elevation site, the precipitation recon-
structions diverge, especially when the systematic negative offset
in the GLM-based reconstruction of the related modern sample
sites is accounted for. In both methods there is no indication of
a quite dry early Holocene, even if the modern sample offset is
ignored. Climatologically, this represents a key result: it sug-
gestsdin conjunction with data from Davis (1995) for the Sierra
Fig. 5. Reconstruction of annual precipitation over the Holocene (based on pollen pres
reconstruction from Wahl (2002) is shown at left; GLM-inversion reconstruction reported
shrubs)] is shown at right (cf. Fig. 4). The blue and brown reconstructions are from the two
shown. Vertical line indicates modern climatology (0 cm anomaly) at the two sites. Estimate
for modern data sites in very near proximity to the fossil data sites are shown by open diam
(2002); “BP” indicates years before CE 1950.
Nevada Mountains of northern California and from Anderson
(2000) for lowland coastal southern Californiadthat there was
a sharp moisture gradient (dry to the west and north/wet to the
east and south) just west and north of montane southern California
in the early Holocene (cf. Wahl, 2002).

4. Discussion of site-specific uncertainty

An obvious next step in probabilistic reconstruction modeling is
to go beyond single-site reconstructions. The reconstructions from
the three nearby lakes in west-central Wisconsin, USA (Section 3)
allow discussion of different sources of uncertainty and also to
relate to the use of ensemble simulations in modern climatology
and numerical weather prediction. Ensembles of climate simula-
tions are presently the only way to sample uncertainties arising
from initial conditions, parameter selection, and structural uncer-
tainties in model design. The important question is how ensembles
can be translated into probabilistic information, which is typically
erved in wet meadow sediments) in southern California, USA. ROC-optimized MAT
in this article [based on pollen ratios of (all conifers)/(all conifersþ oakþ important
sedimentary fossil sites noted in left panel of Fig. 4, with temporal data coverages as

d 67% (“one sigma”) probability ranges of reconstruction are indicated. Reconstructions
onds. Timing of fossil pollen samples is based on calibrated 14C dating reported in Wahl



Fig. 6. Estimated mixture model probability distribution of the reconstructions for the three lakes shown in Fig. 1. The distribution follows from an ensemble kernel dressing
approach (EKD) as described in Schölzel and Hense (2011). The blue shading shows the posterior probability density for temperatures; dashed/dotted lines indicate the 95/99%
probability ranges. The number of boxes along the time axis estimates the optimum number of mixture model components at each time period reconstructed, using the Bayesian
Information Criterion (BIC). Two or three boxes support a conclusion that there is significant site-specific representation of pollen in relation to summer temperature across the
individual lakes; implying that the uncertainty in reconstruction is underestimated at the individual sites. (Cf. Wahl et al., in press.)
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referred to as ensemble post-processing or ensemble interpretation
(e.g. Bröcker and Smith, 2008; Wilks and Hamill, 2007). Here, we
try to emphasize the link to these problems, as they are actually the
same in paleoclimate, albeit at lower model complexity.

In order to test the consistency of site-specific uncertainty
modeling in a real-world example, the reconstructions for the three
sites in Wisconsin are interpreted as a three-member ensemble.
With respect to the preciseness of the climate data involved, the
three sites can be considered co-located, so that no additional
spatial modeling of climate is required. Fig. 6 shows estimates for
the optimum number of clusters according to the Bayesian infor-
mation criterion (BIC) for a parameterized Gaussian mixture model
(Fraley and Raftery, 2002). If the differences between the three sites
would be correctly described by their individual uncertainty esti-
mates, there should mainly be onemixture component. Most of the
time, there are two or three components, indicating that the
uncertainty in the reconstruction from the ratio model at each
sitedalthough we account for effects like uncertainty in pollen
countsdis typically underestimated. The same applies for a multi-
variate cluster analysis where the full time series is interpreted as
an nt-dimensional random vector.

More realistic estimates of uncertainty are obtained from
ensemble post-processing methods. The approach used here is
related to ensemble kernel dressing (EKD) and fully described in
Schölzel and Hense (2011). It basically comprises a multivariate
Gaussian kernel density estimationwith temporal error correlation,
i.e., thewhole time series is treated as amultivariate randomvector,
which enables drawing time series from the combined posterior.
The dressing covariance, which is the multivariate extension of the
bandwidth, is estimated from the differences of all ensemble
members. As a variation from the original method, the limitation to
a Toeplitz structure for the covariance matrix has been dropped,
since the assumption of a non-stationary error covariance does not
hold for irregular time steps.

The resulting posteriordistribution iswiderwhen accounting for
inter-site differences (Fig. 6), even though the inverse pollen-ratio
model already accounts for different sources of uncertainty: (1)
theuncertainty inpollen counts,which shouldbe representedby the
draws from the Beta distribution; and (2) the uncertainties due to
the limited statistical model and representation of local climate,
simulated by the MCMC draws for the GLM parameters. For this
experiment we conclude that there must be a systematic underes-
timation of the model uncertainties due to a spatial correlation of
unaccounted explanatory variables; from a paleoenvironmental
standpoint, one of these could be basin-specific sedimentary char-
acteristics that lead to differential pollen representation. Formally
speaking, the assumption of ergodicity does not hold, at least in
a strong form, which is a natural drawback of the reduced model
complexity. Less sensitive but more robust methods like the prob-
abilistic indicator taxa approach described show more consistent
reconstructions of uncertainties, as can be seen for two nearby
sediment cores from lake Holzmar and lake Meerfelder Maar, Ger-
many (Litt et al., 2009), which allow for a similar comparison of
posterior distributions like the three lakes fromWisconsin.

5. Conclusions

Compared to recent advances in modern climatology, recon-
structing paleoclimate from proxy data is still a complicated task.
The picture of past climate involves a patchwork of different proxy
variables, environmental variables, and spatial and temporal scales
using a large number of statistical methods. An important challenge
to the paleoclimatological community going forward is to synthe-
size local reconstructions from different proxies for a spatially
complete picture of past climate. This includes full estimation of the
uncertainties involved in the reconstruction process, which are
naturally large due to the complexity of the proxy-climate rela-
tionships. Spatial multi-proxy BHM approaches are a promising
development toward these aims. However, at the current stage,
they do not access the large accumulated scientific knowledge of
pollen-climate transfer methods.

We therefore have sought to provide perspective on how to
enhance the pollen-based part in multi-proxy paleoclimate
reconstructions and to encourage thinking about classical
approaches in a more mathematically rigorous way such as a BHM
implementation, which allows specification of the different
modeling assumptions in a unified framework. With respect to
a strict probabilistic formulation, it is shown how far classical
pollen-climate transfer concepts like regression methods, MCR,
MAT, and PFT can be understood in such a framework, or have
already been implemented. Almost all of the existing approaches
are characterized by the way an additional random variable,
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representing the vegetation step, is defined. Whether a mixture or
ensemble of different pollen-based transfer methods is advisable,
analogous towell-establishedmulti-model ensembles in numerical
climate simulations, remains unclear. Problems may arise with
conflicting modeling assumptions and the availability of indepen-
dent recent calibration data.

In order to discuss the aspect of uncertainty in a real-world
example, a probabilistic version of a pollen-ratio model, which is
a simplified variation on the MAT using the binomial-logistic
formulation of a GLM, has been introduced and examined in two
reconstruction situations: 1) to estimate last-millennium summer
temperature from pollen in varved sediments in nearby lakes in
west-central Wisconsin, USA; and 2) to estimate full-Holocene July
temperature and annual precipitation from pollen in wet meadow
(fen) sediments in southern California, USA. Compared to traditional
MAT-based reconstructions using the same full-Holocene pollen
data, there is more variability in the GLM-based reconstruction, but
the overall picture for July temperature is the same. For an alterna-
tive use of the GLM model to reconstruct precipitation, the results
can be similarly characterized, except that in the very early Holocene
they diverge. An advantage of the ratio-based reconstructions is that
the model can generate reconstructions in cases when there were
too few modern analogues to reconstruct from the MAT. A disad-
vantage is that the GLM model as described cannot be used simul-
taneously to reconstruct more than one climatic variable, and thus
an analyst would have to choose to reconstruct either temperature
or precipitation from the examples shown. Furthermore, an
ensemble reconstruction experiment reveals that the overall inter-
pretation based on the individual reconstructions remains essen-
tially unchanged, but the single-site reconstructions underestimate
the uncertainty. Whether this also applies to other methods as well
has not been tested, but is an important aspect to be considered for
pollen-based transfer methods, which are typically built under the
(implicit) assumption of ergodicity.

Both the theoretical considerations and the case study of
uncertainty modeling in a practical application provide insights
into inclusion of pollen proxies into a larger multi-proxy BHM,
which is currently under development.
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