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The Value of Multiproxy Reconstruction
of Past Climate

Bo LI, Douglas W. NYCHKA, and Caspar M. AMMANN

Understanding the dynamics of climate change in its full richness requires the knowledge of long temperature time series. Although long-
term, widely distributed temperature observations are not available, there are other forms of data, known as climate proxies, that can have
a statistical relationship with temperatures and have been used to infer temperatures in the past before direct measurements. We propose
a Bayesian hierarchical model to reconstruct past temperatures that integrates information from different sources, such as proxies with
different temporal resolution and forcings acting as the external drivers of large scale temperature evolution. Additionally, this method
allows us to quantify the uncertainty of the reconstruction in a rigorous manner. The reconstruction method is assessed, using a global
climate model as the true climate system and with synthetic proxy data derived from the simulation. The target is to reconstruct Northern
Hemisphere temperature from proxies that mimic the sampling and errors from tree ring measurements, pollen indices, and borehole
temperatures. The forcing series used as covariates are solar irradiance, volcanic aerosols, and greenhouse gas concentrations. The Bayesian
model was successful in integrating these different sources of information in creating a coherent reconstruction. Within the context of this
numerical testbed, a statistical process model that includes the external forcings can improve the quality of a hemispheric reconstruction
when long time scale proxy information is not available. This article has supplementary material online.
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1. INTRODUCTION

Understanding the complex dynamics of the Earth’s climate
system is a grand scientific challenge in the geosciences. Re-
cently this problem has assumed additional importance with
the scientific consensus that human activities are responsible
for the global warming observed over the last decades (IPCC
2007), and also with the expectation that greenhouse gas con-
centrations will continue to increase in the 21st century to levels
that have not been present for millions of years. Not only will
these dramatically change the global climate, but even larger
impacts are expected at a regional scale. Part of the difficulty in
making projections of climate for 50 or 100 years in the future
is that the behavior of the Earth system over such time scales
has not been well observed. In our work we wish to consider
the climate over the past 1000 years as a baseline to study long-
term variability and responses to variations in external forcings
such as solar radiation, greenhouse gases, atmospheric aerosols
(fine particles) and other factors. Also, time spans of this length
or longer are useful for testing whether advanced climate mod-
els, also known as atmosphere/ocean general circulation models
(AOGCM), are able to simulate longer term features of the cli-
mate system accurately. AOGCMs are the main scientific tool
for estimating future climate in response to different scenarios
of greenhouse gas concentrations and so their development and
validation are important for quantifying climate change over the
next century. A statistical approach for validation is especially
useful because the discrepancy between the model simulations
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and observations can be contrasted with the uncertainty in the
observations themselves.

Estimates of the Northern Hemisphere (NH) temperature
based on a spatial network of stations taking direct tempera-
ture measurements only exists for the past 150 years. Prior to
this period the observations are too sparse to provide an ad-
equate estimate of this hemispheric average. Moreover, mea-
surements of the ocean and upper atmosphere are even more
restricted in time being largely confined to the last 50 years.
Given the paucity of long-term and direct measurements of the
atmosphere and ocean, the description of long-term behavior
of the climate system and the development of climate models
for long-term simulation must rely on other sources of infor-
mation. Put simply, we need other means to determine surface
temperatures before there were thermometers. Fortunately there
are other forms of data, known as climate proxies, that can have
a statistical relationship with temperature and can been used
to infer temperatures in the past before direct measurements.
These proxies can give different representations of tempera-
ture at different temporal and spatial scales. Because of the het-
erogeneity among different kinds of proxies, most of the work
in the paleoclimate community has focused on reconstructions
that use a single type of climate proxy to infer temperature. Our
goal is to extend reconstruction methods to exploit different
kinds of climate proxies and thereby improve the accuracy of
the reconstruction at different time scales.

This work proposes Bayesian hierarchical models (BHM)
that are able to combine different kinds of climate proxies to
create a single reconstruction for NH average temperature and
also provide rigorous measures of uncertainty in the recon-
structed temperatures. It is not obvious how to evaluate these
methods for a temperature reconstruction where the true past
temperatures are by no means available. In this paper we fol-
low the convention in the paleoclimate community to evaluate
reconstruction approaches using a high resolution simulation
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of the Earth’s climate as “truth,” and we also apply our meth-
ods to synthetic proxy data generated from this simulation. The
synthetic proxy data bear the main characteristics of the real
proxies.

A scientific contribution of this paper is an estimate of the
added value of combining proxies with different climate reten-
tion characteristics and including external forcings series. To a
statistician this is a practical exploration of different statistical
designs for climate proxy and forcing datasets. Assembling a
meaningful multiproxy dataset is by itself time consuming and
thus an important question is whether such an effort is worth
the additional accuracy in the reconstruction. A companion is-
sue is the value of including external forcing information into
the statistical procedure, especially when the forcing series also
have observational errors. The inclusion of forcings can be crit-
icized as adding nonclimatic information that should better be
used in the post reconstruction to evaluate the cause of the cli-
matic variations. However, if the forcings provide substantial
improvement in the reconstruction and are included with rele-
vant components of statistical uncertainty then they might be
very useful. In particular, we are interested in determining the
tradeoff between using external forcings jointly with a single
proxy type or using multiple proxies. To our knowledge this
is the first deliberate exploration of these statistical design/data
issues for paleoclimate applications. Given the scope of these
methodological issues we defer any reconstructions based on
actual observations and their geophysical interpretation to a
subsequent paper.

1.1 Multiple Proxies for Temperature

Different proxies preserve the climate information in differ-
ent ways and therefore are sensitive to climate variables at dif-
ferent time scales. One might be good at short time scales, while
another better at longer time scales. This is a key to our ap-
proach and the Bayesian hierarchical modeling that we employ
takes advantage of such complementary skills/characteristics
among different proxies. In this work we consider three widely
used but distinct climate proxies: tree rings, borehole tem-
peratures, and pollen abundance. Tree-ring width and density
are perhaps the most widely distributed and generally used
proxy and their relationship to seasonal temperatures has been
extensively studied (Fritts 1976; Cook and Kairiukstis 1990;
Schweingruber 1996). Although tree-ring measurements typi-
cally have their dating accurate to the year, their ability to en-
code centennial and slower climate variability is often limited
by the technique used to remove nonclimatic variations in tree-
ring time series (Cook et al. 1995; Briffa and Melvin 2008).
Borehole depth temperature profiles directly preserve the sur-
face temperature variability as the surface heat diffuses down-
ward into the earth and have been recently used to character-
ize NH continental temperature for the past 500 years (Huang,
Pollack, and Shen 2000; Harris and Chapman 2001; Chapman,
Bartlett, and Harris 2004). As opposed to tree rings, borehole
temperatures are only sensitive to climate variations at multi-
decadal or longer time scales due to the attenuation by the dif-
fusion process. As a third proxy, pollen records provide climate
information that can fill the gap between tree ring and bore-
hole temperatures because they are considered sensitive to mul-
tidecadal variability. Although pollen records are widely dis-
tributed and have been used for reconstructing temperatures at

discrete periods in the past (Guiot, Harrison, and Prentice 1993;
Williams, Bartlein, and Webb 2000), they have only rarely been
used in large-scale temperature reconstructions for the past mil-
lennium. For more details on these proxy characteristics, see
Guiot et al. (2005).

1.2 External Drivers of Climate

Besides proxy measurements of past climate, there are also
observations of the external drivers of the climate system. In
this work we will focus on solar irradiance, volcanism, and
greenhouse gases as primary external forcings for temperature
evolution. These three forcings drive the large-scale climate
variation, because the climate system has to react to any varia-
tions of these three forcings in order to restore the energy bal-
ance (Crowley 2000; IPCC 2007). A positive solar irradiance
forcing tends to warm the surface, whereas a negative one tends
to cool it. Volcanism often causes sudden temperature drops be-
cause the large amount of aerosols ejected by an explosive vol-
canic eruption into the atmosphere reduces the radiation reach-
ing the surface. Unlike those two natural forcings, recent in-
crease in greenhouse gases, with CO2 as a major component, is
a forcing due to human activities. An important component of
our statistical model is the inclusion of an empirical model for
temperature that depends on these forcings. We believe that this
covariate information is an important addition to that from the
proxy observations (Hughes and Ammann 2009), and also dis-
tinguishes our approach from many conventional paleoclimate
reconstructions.

1.3 Statistical Estimates of Past Temperatures

Most studies reconstruct the past temperature by relying on
only one proxy record of a particular resolution and do not use
external forcings as covariate information. For example, Mann,
Bradley, and Hughes (1998), Jones et al. (1998), and Crowley
and Lowery (2000) reconstructed the NH temperature based on
annually recorded proxy data, with Esper, Cook, and Schwein-
gruber (2002) and Briffa and Melvin (2008) exclusively based
on tree rings. Viau et al. (2006) carried out the reconstruction by
focusing on pollen only and Harris and Chapman (2001) drew
inference for the past temperature primarily based on borehole.
Only a few reconstruction applications have tried to integrate
data from sources with very different temporal resolution (e.g.,
Beltrami et al. 1995; Huang 2004; Moberg et al. 2005; Haslett
et al. 2006). Although they found that data integration improves
the reconstruction, none of them has integrated all three types
of proxies as well as the external forcings mentioned above.
Furthermore, no work has been conducted to systematically in-
vestigate the role of proxies and forcings and thus provide a
guide for temperature reconstruction.

We develop a Bayesian hierarchical model (BHM) to recon-
struct the NH mean temperature that incorporates the infor-
mation from tree ring, pollen, and borehole records altogether,
and also makes use of past forcings. BHMs have been demon-
strated to be a powerful method in solving complex problems
in climatology, ecology, and environmetrics (e.g., Wikle et al.
2001; Berliner, Milliff, and Wikle 2003) by splitting a compli-
cated model into three basic components: an observation level,
a process level, and a level of prior information on statistical pa-
rameters. In this application the observation level relates each
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proxy to temperature, the process level relates temperature to
the external forcings and the prior level specifies prior distrib-
utions of regression and variance parameters that tend to stabi-
lize the problem but are otherwise uninformative. The synthesis
of proxies and forcings enabled by BHMs will ideally provide
more accurate reconstructions because the strength of one com-
ponent can compensate for weakness of others.

Compared to the widely used regression approach (e.g., Li,
Nychka, and Ammann 2007) in the temperature reconstruction,
our method can avoid the possible attenuation effects caused
by errors in explanatory variables (Ammann, Genton, and Li
2010), because the BHM explicitly models the measurement
error in proxies. To our knowledge Haslett et al. (2006) and
Lee, Zwiers, and Tsao (2008) are the two earliest statistical ap-
proaches that consider an observational model for the proxies.
Haslett et al. first proposed a Bayesian reconstruction based on
the fossil pollen data, but they did not consider other type of
proxies and external forcings. Lee, Zwiers, and Tsao proposed
a Kalman filter approach to incorporate the external driving fac-
tors, yet they did not consider combining proxies with different
resolution.

1.4 Evaluation of Reconstruction Methods

In developing and testing this statistical method we take
an unconventional approach in its evaluation of scientific im-
pact. Because there is no adequate “ground truth” available for
evaluating the fidelity of reconstruction approaches, we use a
high-resolution, state-of-the-art climate simulation of the past
1150 years (Ammann et al. 2007) as a means for evaluating the
method. Specifically we use the output from the climate model
to generate synthetic proxy datasets that represent the character-
istics of real-world proxies and include the forcings used in the
simulation to determine how well our method can reconstruct
the model temperatures. The strategy of using synthetic data
from climate model output to evaluate the reconstruction meth-
ods is well established in the paleoclimatology literature (Mann
and Rutherford 2002; Rutherford et al. 2003; Zorita, Gonzalez-
Rouco, and Legutke 2003; von Storch et al. 2004; Ammann
and Wahl 2007; Lee, Zwiers, and Tsao 2008) and is a prac-
tical solution to provide test beds that are complex but where
the true temperatures are assumed known. Finally it should be
noted that the climate model has substantial complexity relative
to any tractable BHM and so studies using this model provide a
reasonable measure of how well a statistical model can account
for high dimensional and nonlinear geophysical process with
stochastic components.

1.5 Outline of Article

Section 2 gives details on the global climate model output
used for evaluating the method and the external forcings se-
ries for the past 1150 years. Section 3 describes the salient
features of different proxy data and how we generate the syn-
thetic proxies. Section 4 presents the BHM for combining prox-
ies and forcings in temperature reconstruction, and discusses
several variations of the hierarchical model. Section 5 shows
the results from different hierarchical models under different
combinations of proxies and forcings, answers the design ques-
tions raised in the Introduction, and analyzes the identifiabil-
ity of parameters. Section 6 discusses the strength and exten-
sibility of this Bayesian hierarchical framework with respect

to temperature reconstruction. Finally, all the data, R files,
and supplement material involved in this paper are posted at
http://www.image.ucar.edu/Data/ .

2. CLIMATE MODEL OUTPUT AND
RADIATIVE FORCINGS

Climate system models are large computer codes that im-
plement the basic physical equations for fluid dynamics and
for thermodynamics to describe the motion of the atmosphere,
ocean, and sea ice and their interaction with the land. The mod-
els are highly nonlinear and expressed in a differential form
where the state of the climate system is stepped from one time
point to the next over a short time interval by solving a large
system of coupled partial differential equations. The model
simulations are started by initial conditions of the ocean, at-
mosphere, and sea ice and are then subsequently driven by in-
ternal variability that is modulated or changed over time by ex-
ternal forcings such as solar irradiance, volcanic aerosols, and
greenhouse gas concentrations. In addition, topography and an
annual cycle of land cover are prescribed as boundary condi-
tions for the atmosphere over land. Averaging the results of the
model over a specific time period provides an estimate of the
climate of the model.

The climate simulation used in this work (Ammann et al.
2007) is a run of the National Center for Atmospheric Re-
search (NCAR) Community Climate System Model (CCSM)
Version 1.4 (Boville et al. 2001; Otto-Bliesner and Brady 2001).
The model atmosphere and land components were configured
with a resolution of 3.75◦ × 3.75◦ or 400 km × 400 km, a 3◦
resolution in the ocean with meridional resolution of <1◦ at
the equator. Details of this experiment can be found in Am-
mann et al. (2007) and at http://www.cesm.ucar.edu. Its simu-
lated global annual temperature during 850–1999 is shown in
Figure 1. A near hockey stick shape of this temperature series
results from the increased forcings due to greenhouse gases.
This shape, while a realistic representation of how temperature
has increased, can cause a bias in the reconstruction and is dis-
cussed in the section on numerical results.

The three external forcings we consider here are solar irradi-
ance, volcanism, and greenhouse gases. Those are also the key
forcings used in the simulation by Ammann et al. (2007). For
simplicity, we have not separated out tropospheric aerosol, as
its variation after 1870 is similar to the greenhouse gases. The
solar irradiance series is a reconstruction by Bard et al. (2000)
and is derived from measurements of fluctuations of 10Be pro-
duction rates which is modulated by solar magnetic variability.
The volcanic series is based on a synthesis of individual ice
cores (see http://www.ncdc.noaa.gov/paleo/ icecore.html) and
in some cases on historical records of large eruptions. It is then
transformed to be an estimate of volcanic sulfate aerosol mass
(Ammann et al. 2007) whose amplitude reflects the radiation
reduction. The change in greenhouse gases and its forcing prior
to the 1950s is derived from air bubbles in ice cores and then
direct measurements exist subsequently. We use carbon dioxide
as a simple representation because other gases changed very
similarly, albeit with different relative concentration. The shape
of the carbon dioxide series is dominated by the first slow then
rapid increase since the beginning of the 19th century. Figure 1
illustrates the three forcing series.

http://www.image.ucar.edu/Data/
http://www.cesm.ucar.edu
http://www.ncdc.noaa.gov/paleo/icecore.html
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Figure 1. The diagram of three forcings. The grey curve is the NH temperature, and among the black curves (a) is the volcanism, (b) is the
solar irradiance, and (c) is the greenhouse gases. All the curves are scaled in order to show them clearly in one figure.

Because the BHM will estimate the regression relationship
between these variables and temperature, the individual scales
of these series will not affect the reconstruction. This is useful
as some of the uncertainty or error in these series is attributed
to the absolute scale. For example, most discrepancies among
different solar irradiance estimates are due to different scaling
(Bard et al. 2000) which has little effect to our approach. The
year-to-year variation in the greenhouse effect is very small for
centuries before about 1800 and will have negligible effect be-
cause the key impact will more likely occur at the end of the
time series. The estimates of volcanism, however, bears uncer-
tainty in individual events that can reach 50% of the magnitude
(Rind 1995 and Zielinski 2000), and thus needs to be taken into
account by a statistical model.

3. CLIMATE PROXIES OBSERVATIONS AND
GENERATING SYNTHETIC PROXIES

3.1 Tree Rings

Variation in the width and density of tree rings represent the
most widely known climate proxy. Moreover, the wide geo-
physical distribution of trees make them well suited to high-
resolution paleoclimate research. As a result of strong replica-
tion within and between specific sites and regions, and careful
checking for common patterns, dating is effectively absolute,
that is, accurate to the year. However, the potentially limited
ability of capturing centennial and slower climate variability
might inhibit the tree-ring networks from representing climate
uniformly across the frequency spectrum, and hence the tree-
ring-based reconstruction should be viewed with caution for
time scales ranging from multidecadal to multicentennial (Cook
et al. 1995).

Synthetic Tree-Ring Observations. To generate synthetic
but realistic tree rings from the climate model simulation, we
first select 15 local temperature series from the CCSM output
and then generate 15 pseudo tree-ring records by a high pass
filter. Specifically, we subtract the 10-year smoothing average
from each of the local temperature series to give a filtered result.
This might be an extreme approach for representing tree-ring
information that perhaps in reality will not occur so drastically.

However, the high frequency representation of tree rings in gen-
eral has been well studied and accepted in the dendrochronol-
ogy community (e.g., Cook et al. 1995 and Briffa et al. 1996),
and the strategy of treating tree rings only being informative
at high frequencies was originally employed by Moberg et al.
(2005). So it serves the purpose of our study that evaluates the
capability of our method in combining different proxies. Fig-
ure 2 shows the 15 locations and Figure 3 gives an example of
generated tree rings.

3.2 Borehole Temperatures

Temperature-depth profiles measured in boreholes contain a
record of surface temperature changes due to the thermal diffu-
sion in the Earth, hence they provide a means to directly esti-
mate the past temperatures through inversion of the down-core
temperature profile after taking the natural geothermal gradi-
ent into account (e.g., Beltrami 2001). However, the borehole
profile itself is unable to recover the surface temperatures at
annual resolution, because the ground essentially behaves as
a low pass filter only retaining the long term trends of cli-
mate. In particular, the filtering becomes more and more se-
vere with time further back and thus smears out the poten-
tially recoverable temperatures. As a result, borehole temper-
atures are only sensitive to climate variations at multidecadal
or longer time scales (Gonzalez-Rouco, von Storch, and Zorita
2003; Mann and Schmidt 2003; Chapman, Bartlett, and Har-
ris 2004; Huang 2004). Recently, borehole-derived temperature
estimates have attracted much attention because several stud-
ies have systematically pointed towards a larger temperature
change since AD 1500 over the NH continents compared to the
other reconstructions (e.g., Huang, Pollack, and Shen 2000).

Synthetic Borehole Observations. Unlike generating syn-
thetic tree-ring proxies using individual temperature series, we
generate borehole data based on five regional composite tem-
perature series. These five composite temperature series are the
local average of model temperature output over five 20◦ × 20◦
squares as shown in Figure 2. The distribution of those loca-
tions reasonably represents the spread of real borehole data
(Huang, Pollack, and Shen 2000). Due to the complexity of the
physical process in forming the borehole profile, the algorithm
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Figure 2. Pseudo-proxy sampling locations in the Community Climate System Model. The online version of this figure is in color.

to generate the borehole depth temperature is not straightfor-
ward. Therefore, we follow the modern preobservational mean-
surface air temperature (POM-SAT) model which was origi-
nally derived by Carslaw and Jaegar (1959) and recently dis-
cussed by Harris and Chapman (2001) and Harris (2007) to
simulate the borehole profiles up to 500 m. The value of the
profile at every 5 m depth interval is considered the synthetic
depth temperature. The POM-SAT model basically describes
the diffusion process of surface temperature given an appro-
priate initial condition while having the attenuation of a ther-
mal perturbation with respect to depth taken into account. This
model has proven to be consistent with all diffusion processes
(Harris 2007). To illustrate the characteristic of the borehole
data, we show in Figure 4 artificial examples of how a 1000-
year-long constant time series with a perturbation at different
ages is represented in the borehole temperature profile. As ex-
pected for a diffusion process, the older a surface perturbation,
the more smeared out in the borehole profile. For example, the
temperature profile corresponding to the time series with the
earliest pulse is the most flat among the five due to the severe

smearing of this pulse, whereas the profile corresponding to the
latest pulse displays a clear perturbation. As a consequence, the
flat profile lost the most information about the exact timing, the
nature and duration of the pulse.

3.3 Pollen Indices

Pollen assemblages retain a smoothed record of climate vari-
ation due to the persistence properties of mature plants (Brown
et al. 2005), even where the data itself might be available at
higher resolution. Since fossil pollen records possess skills in
recovering temperatures at bidecadal to semicentennial time
resolution, they provide climate information that can fill the gap
between tree rings and borehole data (Bradley 1999).

Synthetic Pollen Observations. Similar to the procedure of
generating synthetic borehole proxies, we select 10 regional
composite temperature series as the local average of 7.5◦ ×7.5◦
squares to generate pollen data. The locations of those squares
are also shown in Figure 2. As discussed above that pollen car-
ries information only at multidecadal temporal resolution, we

Figure 3. An example of synthetic tree rings and synthetic pollen together with the temperature (grey curve). The tree rings are represented
by the upper black curve, and the pollen is shown by dots which are observed at every 30 years. The black curve with dots embedded is the
10-year smoothing average of the temperature.
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Figure 4. The borehole profile corresponding to the temperature series with a pulse at different time locations. This illustrates that the older
a surface perturbation, the more smeared out in the borehole profile due to the diffusion. The online version of this figure is in color.

therefore mimic a pollen assemblage by sampling a 10-year av-
erage temperature series at 30-year intervals. The strategy of
having pollen contain only lower frequency information than
tree rings is analogous to the wavelet decomposition in Moberg
et al. (2005). Figure 3 gives an example of such a generated
pollen series.

Note that the above three temperature transformations in Sec-
tions 3.1 to 3.3 for generating proxies determine the three trans-
formation matrices of MD, MP, and MB in Section 4. More
details of synthetic proxies generation can be seen in the sup-
plement and the corresponding R files.

3.4 Noise in Proxies

Real world proxies are expected to contain extra noise in ad-
dition to the uncertainty between temperature at local scales and
the hemispheric average. In order to assess the sensitivity of our
approach to the noise in proxies, we additionally synthesize an-
other set of proxies with an error component by adding white
noise to the local/regional temperature series before they are
processed to generate synthetic tree rings, pollen, and borehole.
The variance of the noise is chosen to give a signal to noise ra-
tio of 1 : 4 that conservatively reflects the expected precision in
actual data (Mann et al. 2005). The reason that we add random
perturbation to the original temperature rather than directly to
the synthetic proxies is to preserve the smooth profile of pollen
and borehole temperatures, and it more realistically represents
the local climate noise that subsequently carries over into the
proxy archives.

4. BAYESIAN HIERARCHICAL MODEL

BHMs split a complicated model into three basic compo-
nents. The data model occupies one level of the hierarchy, while

the process model resides below it. Typically, a third hierar-
chical level contains statistical models, also called priors, for
unknown parameters that includes additional physical informa-
tion. The levels are formally generated by a series of condition-
ing steps where one level is conditioned on knowledge of the
levels below it. The reader is referred to Banerjee, Carlin, and
Gelfand (2004) for an introduction to BHMs. Let [X,Y] denote
the joint probability density function of the random variables
X and Y and [X|Y] the conditional density of X given Y . Now
let P denote proxy observations, T the NH temperature process
and θ a set of statistical parameters that are involved in specify-
ing the joint distribution of P and T . The model specification is
precisely the joint distribution [P,T, θ ]. This form can be built
from the product of conditional distributions:

[P,T, θ ] = [P|T, θ ][T|θ ][θ ].
Regarding the paleoclimate reconstruction problem an adum-
bration of the hierarchial levels is (i) Data stage [P|T, θ ],
(ii) Process stage [T|θ ], (iii) Priors [θ ]. Level (i) focuses on
modeling statistical errors of the observed data and presents the
likelihood of the observed proxies given the true temperature
process, while level (ii) models the temperature process from
the physical perspective. Level (iii) gives prior distributions of
the unknown parameters and closes the hierarchy.

4.1 Full Model

Let Di, Pj, and Bk be vectors of synthetic tree ring (Dendro-
chronology), Pollen, and Borehole data indexed by their various
locations. Note that these groups of proxy vectors will have dif-
ferent lengths due to their sampling. Moreover, each tree ring
and pollen vectors are indexed with respect to time, and the
borehole vectors are indexed by depth. Let S, V0, and C be the
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time series vectors of solar irradiance, volcanism, and green-
house gases, and let V denote the volcanic series with error.
Also let 1 denote a vector of ones with a generic length which
will be determined individually by the conformable condition
according to the local context.

Let MD, MP, and MB be the three transformation matri-
ces to link temperature series to tree ring, pollen, and bore-
hole, respectively. Here we assume that those transformations
are known. Although the real relationship between proxies and
temperatures can be more complex than such a linear transfor-
mation, those three matrices are derived from the main charac-
teristics of tree ring, pollen, and borehole data described in Sec-
tion 3. More specifically, they represent the linear filters used to
generate the corresponding pseudo proxies from the model tem-
perature series. For example, the MB is derived from the POM-
SAT model that is used to generate synthetic borehole profiles.
Note that those matrices can be easily updated if more precise
working models between proxies and temperatures are devel-
oped. Finally it is useful to partition the full-length temperature
process T into the unknown temperatures T1 requiring recon-
struction over the time span of available proxy data, and the
observed instrumental temperatures T2 (1850–present), that is,
T = (T′

1,T′
2)

′. Then we have the data and process models be-
low:

(i) Data stage:

Di|(T′
1,T′

2)
′ = μiD1 + βiDMD(T′

1,T′
2)

′ + εiD,

εiD ∼ AR(2)(σ 2
D, φ1D, φ2D), (4.1)

Pj|(T′
1,T′

2)
′ = μjP1 + βjPMP(T′

1,T′
2)

′ + εjP,

εjP ∼ AR(2)(σ 2
P, φ1P, φ2P), (4.2)

Bk|(T′
1,T′

2)
′ = MB{μkB1 + βkB(T′

1,T′
2)

′ + εkB},
εkB ∼ iid N(0, σ 2

B), (4.3)

V|V0 = (1 + εV)V0,

εV ∼ iid N(0,1/64). (4.4)

(ii) Process stage:

(T′
1,T′

2)
′|(S,V0,C) = β01 + β1S + β2V0 + β3C + εT ,

εT ∼ AR(2)(σ 2
T , φ1T , φ2T). (4.5)

The target is to estimate T1 given T2, the proxies, and the
forcings. Forward models (4.1) to (4.3) describe the statistical
relationship between proxies and the true temperature process.
Those models assume a stationary linear relationship between
a local proxy and NH temperature over time and also condi-
tional independency between proxies given true temperatures.
The special form of model (4.3) respects the smooth feature of
the borehole profile by applying the smooth filter MB also to
the error term εkB, because as opposed to tree rings and pollen
assemblage the real borehole profile is a smooth curve. Proxies
of the same type but from different locations, such as the 15
tree rings, 10 pollens, or 5 boreholes generated in Section 3, are
allowed to have different regression coefficients including the
intercepts and slopes, but they all share the same parameters
in the error process to retain the parsimony of the whole model.
This restriction is reasonable if the proxies are first standardized

before being used, which is a standard method in paleoclima-
tology (Bradley and Jones 1993; Osborn and Briffa 2006).

Model (4.4) accounts for the uncertainty in the volcanism
which is estimated to be between ±25% of the magnitude of the
individual volcanic pulses themselves. Model (4.5) brings the
physical understanding of temperature evolution based on en-
ergy balance theory into the reconstruction. Although our BHM
contains only linear models, we could of course replace those
linear models by more complicated ones. However, we found
that the linear models suffice for our data, and the problem
at hand, that is, reconstructing NH mean temperature (Mann
et al. 2008). Our experience with related data suggests that
an AR(1) structure is likely sufficient but we use an AR(2)
model to provide additional flexibility to accommodate the pos-
sibility of more complex dependence in our application. An
AR(2)(σ 2, φ1, φ2) process is defined as et = φ1et−1 +φ2et−2 +
εt, εt ∼ iid Normal(0, σ 2). The choice of priors and the justifi-
cation for the linear models with AR(2) error structure can be
seen in the supplement.

4.2 Sampling From the Posterior Distribution

The specific choice of priors for time lag coefficients (φ1L,

φ2L) with L ∈ {D,P,T} guarantees their corresponding AR(2)
process to be stationary and causal (Shumway and Stoffer 2006,
chapter 3), and the conjugate priors for all the other parameters
allow for an explicit full conditional posterior distribution for
those parameters and T1. There is no closed form for the pos-
terior distribution of time lag coefficients. Thus the posterior
is sampled by alternating the Gibbs sampler, which is used for
updating T1 and parameters with explicit full conditional dis-
tribution, and the Metropolis–Hasting (M–H) algorithm, which
is used for updating autoregressive parameters. More specifi-
cally, we generate posteriors by Gibbs sampling for T1, V0,
(μiL, βiL) with L ∈ {D,P,B}, βi with i = 0,1,2,3 and σ 2

L with
L ∈ {D,P,B,T}, and generate posteriors by M–H for (φ1L, φ2L)

with L ∈ {D,P,T}.
Whenever the M–H algorithm is used, the acceptance rate

is tuned to be roughly between 25% and 50% to secure ade-
quate mixing of posterior samples (Gelman, Roberts, and Gilks
1996). We choose the hyperparameters μ̃iL = 0 and μ̃′

iL = 1 for
L ∈ {D,P,B}, because this represents the ideal case when the
local/regional temperatures are not biased against the NH tem-
perature. For a similar reason, μ̃i is set to be 0,1,1,1 for i =
0,1,2,3. We found the results are robust to different choices
of those hyperparameters. In order to let the data determine
the final estimates of the regression coefficients, we choose a
relatively wide variance σ̃ 2

iL = σ̃ ′2
iL = 1 for L ∈ {D,P,B} and

σ̃ 2
i = 1 for i = 0,1,2,3 to make the priors less informative.

The hyperparameters (̃qL, r̃L) with L ∈ {D,P,B,T} are set to be
(3,1) which corresponds to relatively vague prior knowledge.
The convergence check by starting sampling from different sets
of initial values indicates that β0, β2, which is the scale para-
meter for zero-inflated volcanism, and σ 2

T in the process model
converge less well than the others. However, our main interest,
the temperature reconstructions appear to be very insensitive to
different initial values (see the supplement for details).

4.3 Simplifications of the Full BHM

In order to answer questions raised in the Introduction, we
consider several simplifications of the full model. Here we list
the different factors that will figure into our numerical study.
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Temperature Process Model Without External Forcings. In
order to identify the role of forcings in the reconstruction, we
compare reconstructions with forcings and without forcings be-
ing incorporated. We form BHMs without forcings by omitting
(4.4) and replacing model (4.5) in the process stage by

(T′
1,T′

2)
′ = β01 + εT , εT ∼ AR(2)(σ 2

T , φ1T , φ2T).

This is equivalent to setting the regression coefficients equal to
zero in the full process model. The discrepancy between results
of this variation and the full model reveals the value of the ex-
ternal forcings at the process level.

An “Oracle” Proxy. Since we are dealing with climate
model output that serves for our data samples, there is an op-
portunity to test the reconstruction skill of the BHM approach
under optimal conditions, that is, if instead of local proxy data
there would have existed long perfect instrumental series at the
same locations. Therefore, we consider an oracle (after the leg-
endary oracle in the temple at Delphi that provided divine an-
swers to questions posed by visitors) proxy that contains full
knowledge of the true temperatures at the gridbox locations.
These idealized proxies can be interpreted as having thermome-
ters back in time at these locations and the reconstruction error
then is dominated by the skill of these locations in reproducing
the hemispheric average. The oracle reconstruction is a bench-
mark because it is the best reconstruction from a selected sam-
ple of local/regional temperature series. To obtain the “oracle”
reconstruction, we replace the three data models (4.1) to (4.3)
by one single model

Tl|(T′
1,T′

2)
′

= μl1 + βl(T′
1,T′

2)
′ + εl, εl ∼ AR(2)(σ 2, φ1, φ2),

where Tl are the grid box temperature time series (30 in total)
that are used to generate all three types of proxies. The other
levels in the hierarchy are kept the same.

Subsets of Proxies. Although the oracle experiment pro-
vides a baseline reference, our main interest is in separating
the contribution of each proxy to the reconstruction, and exam-
ining how deficiencies in one could be compensated for by oth-
ers. This can be accomplished by reducing the full model into
a sequence of submodels that only contain a subset of the three
proxies, that is, this can be carried out by omitting different sets
of proxies from the data level.

Partial Temperature Process Model. The temperature re-
construction usually assumes a stationary relationship between
temperatures and proxies across time, and this is also implied in
our hierarchical models. In addition, we assume that the temper-
ature process at the prediction period T1 and at the calibration
period T2 follow the same model. Thus it imposes the constraint
that the mean function of temperatures, either as a function of
forcings or as a constant, is identical for both the calibration
and prediction periods. One can relax this constraints by mod-
eling only T1 in the process stage, and investigate the effects
caused by this assumption. In this case, the process model (4.5)
becomes

T1|(S,V0,C) = β01 + β1S + β2V0 + β3C + εT ,

εT ∼ AR(2)(σ 2
T , φ1T , φ2T).

5. NUMERICAL STUDY

Motivated by the issues raised in the Introduction we eval-
uated the following five different subsets of proxy or related
data.

(T): Oracle proxies,
(D): Tree ring (Dendrochronology) only,

(DP): Tree ring + Pollen,
(DB): Tree ring + Borehole,

(DBP): Tree ring + Borehole + Pollen.

For each of these cases we explored the different BHM
choices with a 23 factorial design: with/without forcing co-
variates, with/without proxy noise and modeling T1/T in the
process model. Thus our study consists of a total of 5 × 23 sep-
arate reconstructions that can be compared to the actual model
temperatures. The bias and the variance of differences between
the reconstruction and target are two informative measures to
evaluate the reconstruction with the square root of the sum of
the squared bias and the variance being the root mean squared
error (rmse). Both low bias and low variance are desirable for
being a good reconstruction, and we report the bias, variance,
and rmse for all reconstructions in Figure 5. In general the pat-
terns are what one can expect with the rmse decreasing as prox-
ies are added and the oracle proxy having the smallest rmse.

In order to more formally compare different reconstruc-
tions, we employ the posterior predictive loss criterion pro-
posed in Gelfand and Ghosh (1998) that considers predictive
biases penalized by predictive variances. Specifically, we con-
sider a loss function Dk(m) for each model (reconstruction) m,
m = 1,2, . . . ,40,

Dk(m) = P(m) + k

k + 1
G(m),

where k ≥ 0 is a weighting parameter, P(m) is the sum of pre-
dictive variances that imposes penalty on the complexity of
models and G(m) is the sum of squared errors that measures the
goodness of fit. Letting k → ∞, we have D(m) = P(m)+G(m).
For each of the 40 models, we studied Dk(m) for k = 1,3,9,

and ∞. We found that the ordering of models under Dk(m) is
insensitive to the choice of k, and moreover, the pattern of D(m)

highly matches the pattern of rmse in Figure 5(c) (see supple-
ment). Therefore, for convenience we simply examine rmse for
model comparison.

5.1 The Value of Forcings and Proxies

Influence of External Forcings. Forcings play a very impor-
tant role in obtaining a well calibrated and sharp reconstruction.
As seen in Figure 5, in all cases inclusion of forcing covariates
reduce the bias, the variance and thus rmse. In particular, when
there is no pollen data involved, forcings dramatically improve
the performance of the reconstruction based on tree rings or a
combination of tree rings and borehole. Yet once pollen is be-
ing employed, the benefit of incorporating forcings becomes
less remarkable. Again, this is geophysically not surprising be-
cause pollen data contain the variability information of decadal
to centennial scale. In short, external forcings are helpful if the
included proxy data do not well represent the low frequency
variability.
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(a) Bias

(b) Variance

(c) Root mean squared error

Figure 5. Bias, variance, and rmse of the reconstructions for five data models and 23 scenarios that are combinations of with/without forcings,
with/without noise and modeling T1/T in the process stage. “C” and “F” are the reconstructions without forcings (with constant mean function)
and with forcings incorporated, respectively. The online version of this figure is in color.

Skill of Proxies. We focus on the five data models (T, D,
DP, DB, DBP) where forcings are absent, proxies are not sub-
ject to noise, and constant mean process model is assumed for
T = (T′

1,T′
2)

′ rather than only T1, to study the contribution due
to each type of proxies. This corresponds to the “C” points in
the leftmost panels of Figures 5(a) to (c), and the patterns in
those plots roughly imply the role of each type of proxy. To
more clearly illustrate the benefit of incorporating a particular
type of proxy, we compare the spectrum of the reconstruction
residuals from the five different data subsets. The residual spec-
trum at different frequencies measures the variation component
that we missed in the reconstruction at that specific frequency.
Figure 6 shows that the spectrum based on data models (D) and
(DB) look similar and also the spectrum based on data models
(DP) and (DBP) are hardly distinguishable, although the latter
two have smaller power at low frequencies due to the involve-
ment of pollen proxies in the reconstruction. Since pollen was
sampled every 30 years from a 10-year smoothing average of
temperatures, it would thus be expected to retain the variabil-
ity at around a 30-year period. This is verified by the observa-
tion that the spectrum of (DP) and (DBP) departures from the
spectrum of (D) and (DB) at about a 30-year period after an

agreement at high frequencies. Borehole information does not
appear to contribute much because the spectrum only describes
the variation whereas the information therein is smeared too
much to recover any detail of temperature evolution other than
a long term trend. However, as seen in Figure 5(a) the borehole
does help to reduce the bias a bit. Overall, compared to the ora-

Figure 6. Using smoothed spectrum of reconstruction residuals
from the five data models to illustrate the frequency band at which
proxies capture the variation of the temperature process. Both axes are
plotted on a logarithmic scale. The online version of this figure is in
color.
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cle proxies (T), the reconstructions using other proxies perform
well at high frequency but are less precise at low frequency,
as part of the low frequency information is lost in pollen and
borehole.

5.2 Other Inferences

Cause of Bias. It can be seen from Figure 5(a) that the
reconstruction when T = (T′

1,T′
2)

′ is modeled in the process
stage carries some systematic positive bias. This positive bias
is pronounced in cases where forcings or information at longer
time scales is not available, that is, T is modeled as an AR(2)
with constant mean which corresponds to the “C” points in the
figure, and no pollen is used in the reconstruction. The reason
for the positive bias is because the observed T2 which serves
the primary source to estimate the mean of T has higher mean
temperature than T1, but was nonetheless assumed to have the
same mean function as T1 in the model. Therefore, after we re-
move this a priori assumption and only leave T1 in the process
stage as described in the partial temperature process model in
Section 4.3, the positive bias has been largely reduced. An-
other way to reduce the bias is to incorporate external forc-
ings since this enables the temperature process to be estimated
by its dependency on forcings. In this way the difference in
mean functions is accounted for by the varying external forc-
ings.

If bias is the primary concern, one should consider the re-
construction that is based on modeling only T1 in the process
stage, though one would have to accept that it will carry more
variance. Note that the oracle reconstruction is not necessar-
ily the optimal reconstruction just in terms of bias. We can see
that some reconstructions have even lower bias than their corre-
sponding oracle experiment. Yet due to the bias–variance trade
off, the oracle reconstruction is the best in terms of rmse. This
is particularly visible when realistic noise is applied into prox-
ies.

Sensitivity to Noise in Proxies. Not surprisingly, the noise
in proxies introduces both bias and more variability in the re-
constructions. We can see from Figure 5 that with the substan-
tial amount of noise added to the proxies, the performance of
the reconstruction deteriorates some but not terribly. It is worth
noting that our results are only based on one set of contaminated
proxies. Given different noise, the performance is slightly dif-
ferent, but does not appreciably change the basic conclusion.

5.3 Posterior Samples of
the Reconstructed Temperature

We select model (DP) with forcings to show examples of the
reconstruction at three scenarios. Figure 7(a) is for modeling T
and no noise, Figure 7(b) for modeling T1 and no noise, and
Figure 7(c) for modeling T and with noise. To make this com-
parison clearer we report posterior reconstructions for decadal
average temperature. In all those figures, the 95% uncertainty
band calculated from the posterior samples is also displayed
together with the reconstruction. In Figure 7, all the recon-
structions follow the trend of the target very well, although
they seem to miss some details. Comparison between panels (a)
and (b) in this figure shows that by modeling only the unknown
T1 in the process stage can effectively reduce the bias caused by
assuming T1 and T2 to have the same mean function. The dif-
ference between panels (a) and (b) and panel (c) illustrates the
larger bias and wider uncertainty band introduced by noise. In
panels (a) and (b), the uncertainty band covers the target tem-
peratures fairly well, while in panel (c) the coverage deterio-
rates due to the bias.

In addition, we formally assess the model adequacy with
posterior samples. Using the criterion of verification rank his-
togram and coverage probability of posterior distributions as
in Gel, Raftery, and Gneiting (2004), we assess our models
by comparing the performance of the reconstructions that are
based on synthetic proxies to the reference reconstruction that is

Figure 7. The reconstructions using tree rings and pollen together with forcings in three scenarios. (a) modeling T and without noise;
(b) modeling T1 and without noise; (c) modeling T and with noise. The grey area is the 95% uncertainty band of the reconstruction.
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based on “oracle” proxies. This is because the reference recon-
struction reaches the capacity of those “oracle” proxies (local
temperatures) in recovering the NH temperature and thus can
serve as a baseline to evaluate the models for synthetic prox-
ies. The results show no evidence towards inadequacy of those
models (see details in the supplement).

5.4 Identifiability of Parameters

We examine the posterior distribution of parameter estimates
and compare them to their corresponding priors to make sure
that priors only have little influence on the parameter estimates.
We focus on the model (DBP) with forcings included and with
proxy errors, because this case has the most complex setting
and provides the greatest challenge in determining parameters.
We found that in general, the posteriors are not sensitive to the
priors and this is suggested by the relatively small variance of
the posteriors compared to their priors. However, compared to
the stable estimates for regression coefficients for tree rings, the
estimates for borehole data contain more uncertainties. More-
over, the BHM is unable to resolve the variance parameter in the
borehole model. We conjecture that this is because the transfor-
mation matrix MB is an ill-posed matrix that has a small effec-
tive rank, on the order of 6 degrees of freedom, hence there is no
way to fully recover the temperature information from the bore-
hole profile. This essentially has been illustrated in Figure 4.
Despite the difficulty in estimating some of the parameters re-
lated to the borehole proxy data the resulting reconstructions
are about the same as (DP) combinations or slightly better.

6. DISCUSSION AND CONCLUSIONS

This paper has proposed a new application of BHMs to re-
construct NH temperatures by jointly using proxy data with dif-
ferent temporal resolutions, and using forcings as external co-
variates of temperature evolution. With this method we investi-
gated the benefits by combining different proxies and by inclu-
sion of the forcings. Our results showed that a process model
that includes the external forcings in the form of an energy bal-
ance can dramatically improve the reconstruction, particularly
if the applied proxy data is deficient of decadal or centennial
scale variability. In our numerical study this improvement can
be by a factor of 2 in rmse. However, its role can be partially
replaced by our hypothetical pollen proxy that fills this range.
Tree rings play a significant role in retaining the high frequency
variability, while pollen improved the reconstruction remark-
ably by capturing the variation at lower frequency band. These
results make a case for attempting multiproxy reconstructions
with tree rings and pollen assemblages and also including exter-
nal forcing covariates. Although we base these conclusions on
a synthetic Monte Carlo experiment, the climate model simula-
tion used as truth is a complex and extensive representation of
the actual climate system and so provides confidence that these
results will extend well to real world conditions.

Pollen proxies are usually collected from sediments layers
and thus possibly subject to dating errors, that is, the date during
which pollen was formed or the age of a layer in lake sediment
might not be exactly identified due to various reasons, such as
the time lag between initial plant introduction to its abundance
and different sediment accumulation rates (see Bradley 1999).
We account for the dating error to some extent by considering

additive proxy errors. However, one area of future work is to
consider a more realistic model for dating errors (Haslett and
Parnell 2008). One surprise in this work is that the hypothetical
borehole proxies do not improve the reconstruction in a sig-
nificant way. Nevertheless, in reality pollen records might not
perform as well as the synthetic ones, and in such a case bore-
hole information may be used more effectively. Also the use of
borehole information might be improved by greater attention to
the ill-posed aspects of the data model.

We believe that our work is a positive contribution to the
paleoclimate community as it attempts to exploit all available
proxy information to discern past climate. Also, whenever a
Bayesian approach is used it will include companion measures
of the reconstruction uncertainty. One perspective of the debate
concerning the Northern Hemisphere temperature reconstruc-
tion proposed by Mann, Bradley, and Hughes (1998) is that
most attention is centered on the estimate but only little on its
uncertainty (see NRC 2006 for a comprehensive report). The
“hockey stick” shape, which was the center of that discussion,
in our context is an approximation to the posterior mean and
then any assessment of the shape must also include the un-
certainty about this estimate. The concept of an ensemble of
possible states is a well-recognized technique in geosciences
to quantify uncertainty in an estimate. Via Bayesian analysis, a
random sample of states from the posterior provides a rigorous
and easily interpreted method for generating an ensemble.

Another advantage of the BHM framework is that it read-
ily extends to more complex data level or process models. Be-
cause of this flexibility we believe that the methods will adapt
to more complex statistical features of real data and the experi-
ence in this study will transfer to more complicated cases. An
important extension will be reconstructing the space–time tem-
perature process instead of the NH temperature based on the
work of Tingley and Huybers (2010), and further reconstructing
the multivariate space–time climate process. Climate variables
of interest include temperature, precipitation and geopotential
heights. The Bayesian framework in this article naturally lends
itself to univariate and multivariate space–time random field re-
construction. Achieving this long-term goal will provide a valu-
able analysis to evaluate the next generation of climate system
models and improve our understanding of past climate.

SUPPLEMENTAL MATERIALS

Additional analysis details and results: More details and re-
sults of the analysis are shown in pdf file. (supplement.pdf)

Data and R codes: The tar file contains all data sets that have
been used in reconstructions and all R codes that imple-
ment the reconstructions. The readme.rtf enclosed in the tar
file describes the content of each data file and R code file.
(paleo.tar)

[Received June 2009. Revised March 2010.]
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Comment: Hierarchical Statistical Modeling for
Paleoclimate Reconstruction

Noel CRESSIE and Martin P. TINGLEY

The article by Bo Li, Douglas W. Nychka, and Caspar M.
Ammann (hereafter, LNA) has several goals. It considers the
important problem of reconstruction of past (over a period of
more than 1000 Years Before Present) climate from multiproxy
data, and it directly recognizes the various uncertainties in this
undertaking. These uncertainties are expressed through (condi-
tional) probability distributions in a framework known to read-
ers of this journal as hierarchical statistical modeling. LNA use
a physical–statistical model that also includes climate forcings,
and their statistical inference is Bayesian. Rather than using ac-
tual multiproxy data, LNA simulate their data. Then they de-
sign a computer-simulation experiment to assess the value of
including the various (simulated) proxies and the forcings. The
design of the experiment, its analysis, and the conclusions ob-
tained from it, are intended to guide climate scientists towards
more precise inferences when carrying out actual paleoclimate
reconstructions. Our discussion of LNA in the sections that fol-
low considers both the scientific and statistical goals summa-
rized above.

1. INTRODUCTION

Because LNA use pseudo-proxy data, not real data, we shall
examine the way these pseudo-proxy data were created. Based
on a combination of scientific expertise and statistical intuition,
time series that mimic tree-ring, borehole, and pollen data were
synthetically produced from the output of a general circulation
model (GCM) of the climate system. This is akin to the bio-
chemist conducting experiments on lab animals, with the goal
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being to eventually take the results from laboratory to bedside
(a goal of Transformative Medicine). LNA realize the impor-
tance of calibrating their proxy data (the “lab animals”) to the
real data (whose analogue would be the “patients”).

LNA use a methodology we call here posterior analysis
(whose analogue might be the “treatment”), that may be new
to the paleoclimate-reconstruction community, but it is well
known to statisticians. Posterior analysis resulting from hi-
erarchical statistical modeling is a powerful way to account
for uncertainties in all aspects of a scientific study. The main
strength of a hierarchical model (HM) is also a point of diffi-
culty, namely that all these uncertainties have to be expressed
through (parametric) probability distributions. This might not
be easy for a paleoclimate scientist to do, and hence the sta-
tistician’s involvement is needed in a posterior analysis from
the “get-go.” As part of our discussion, we shall examine the
appropriateness of the HMs proposed by LNA.

LNA use a computer simulation experiment (i.e., try it on the
lab animals first!) to determine the worthiness of a Bayesian
HM to address this highly complex climate-reconstruction
problem. Their experiment should be assessed like any other,
in terms of the basic principles of blocking, randomization, and
replication (Fisher 1935), and in terms of the responses that
are studied to answer the questions that provoked the experi-
ment. In LNA’s analyses, the responses all depend on the poste-
rior distribution obtained for the various HMs that were fitted,
which is consistent with their (Bayesian) hierarchical modeling
approach.

Obtaining posterior distributions from an HM usually re-
quires a considerable investment in computation. Sometimes,
modeling decisions in the HM are made more for computa-
tional reasons than scientific ones. All of us who use the HM
approach are faced with these compromises, and we discuss this
in the context of LNA’s analyses. In the sections that follow, we
expand on all of these issues raised in our introduction.
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2. DESIGN OF THE COMPUTER
SIMULATION EXPERIMENT

LNA use a General Circulation Model (GCM) as the basis
of an experiment to see whether an HM approach to paleocli-
mate reconstruction of temperature is worthwhile. A large part
of their article discusses the design of the experiment, and we
start with that.

Experimental design has its foundations set out in the book
by Fisher (1935); the three basic tenets are blocking, random-
ization, and replication, and they are by now well accepted
by scientists. Think of the “treatment” in this experiment of
LNA’s as the generic posterior analysis using Bayes’ Theo-
rem and MCMC. Then the “experimental units” are the vari-
ous HMs outlined in LNA’s Section 4.3. It is now noticeable
that their experiment involves only one treatment. It is unusual
to do an experiment without another treatment to compare to;
in this case, it might be a standard analysis in the paleoclimate-
reconstruction literature, such as the RegEM method of Schnei-
der (2001). Even if LNA’s posterior analysis does well, does it
do better than RegEM, say, or any other method a paleoclimate
scientist might use (see, e.g., Jones et al. 2009)? Science ad-
vances by replacing an inferior methodology with a superior
one, whose inferiority is ideally established through a designed
experiment.

LNA do carry out “blocking”; see their Section 4.3 where
the different factors are listed. These correspond to the various
combinations of data and terms included in the HM (e.g., tem-
perature process model without external forcings, the “oracle”
proxy, etc.). However, all their blocks are of size one, because
they only consider one treatment.

There is a component of “randomization” in the experiment,
but not in the sense that Fisher meant it. Fisher was concerned
with which experimental unit received which treatment within
a block. Here the blocks are of size one, but what should hap-
pen if two methodologies (e.g., posterior analysis and RegEM)
were applied to the (proxy) data and compared? In a simulation
experiment, the statistician is able to create two (or more) iden-
tical experimental units, something a crop scientist could only
dream about. (The real-world analogy would be to have homo-
geneous material—such as a water sample from a lake—that is
divided into two parts and a different treatment would be ap-
plied to each.) Therefore, in a simulation experiment, random-
ization of treatment assignment to experimental unit may not
be important, depending on the computing resources needed to
apply a treatment to an experimental unit.

Finally, how much “replication” do LNA have in their exper-
iment? The experiment has a lot of factors and there are many
ways the responses are quantified (see their Section 5), but their
experiment has no replication. In effect, their study is on only
one “lab animal.” It is true that they tried to choose a “typical
lab animal” by using a GCM simulation of the Earth’s climate.
However, there are many decisions that go into such climate
simulations: A way to introduce replication into this experi-
ment would be to look at an ensemble of such Earth-climate
simulators and run several (chosen randomly or purposively)
to guard against any objection that the conclusions from this
experiment are particular to the climate simulator used. Chris-
tiansen, Schmith, and Thejll (2009) make the same point in a
recent article published in the Journal of Climate.

Statistical simulation experiments should be designed in the
same way agricultural, industrial, computer, etc. experiments

are designed. Ultimately, the experimenter is looking to at-
tribute the total variability of the responses to various sources
in the experiment. Aldworth and Cressie (1999) discuss how
this can be done in a systematic way, which they illustrate with
a simulation experiment to compare various spatial sampling
schemes of an ecological resource. In the case of LNA, with
one treatment and one replicate, their analysis can only attribute
the total variability to the various factors (or “blocks”).

3. MULTIPROXY DATA, REAL AND SIMULATED

In LNA’s experiment, the target quantity is the Northern
Hemisphere (NH) average temperature, and they build an HM
to capture the characteristics of three classes of real-world cli-
mate proxies. In order to test their HM, they simulate pseudo-
proxy time series using the output of a GCM.

Tree ring pseudo-proxies are constructed by taking the out-
put of the model at a number of grid locations, adding noise,
and then removing the 11-year running mean. This construc-
tion amounts to high-band-pass filtering the GCM model out-
put that has been purposely noise degraded. Consequently, a
tree-ring pseudo-proxy observation at year t is a function of the
model output at the corresponding location for years t − 5 to
t + 5. Perhaps a running mean that looks back 10 or 11 years
would have been a better choice, since a tree ring cannot contain
information about the future climate.

We interpret the choices they made for tree-ring pseudo-
proxy construction as an attempt to mimic the preprocessing
that is often applied to tree-ring data. A number of tree-ring se-
ries (each perhaps covering a different time interval) are gen-
erally combined to arrive at a single, long, climate-sensitive
series, and techniques such as Regional Curve Standardization
(e.g., Briffa et al. 1992; Esper, Cook, and Schweingruber 2002)
are used to remove biological growth effects from raw tree ob-
servations. These steps may result in a tree-ring observation
at year t being dependent on local climate for years both be-
fore and after t. As referenced in LNA, there is evidence that
tree-ring proxies only record faithfully high-frequency climatic
changes, due either to this processing or to biology. Some re-
constructions (e.g., Moberg et al. 2005) have used tree rings
only to infer the high-frequency component of the spatial aver-
age temperature series. In their supplementary material, LNA
claim that the tree-ring pseudo-proxy construction results in
time series that “look similar” to actual (i.e., not band-pass-
filtered) tree-ring time series. Our spectral analysis (not shown
here) suggests that this is not the case—the actual tree-ring se-
ries provided in the supplementary material have an abundance
of power at low frequencies (the spectra are red), while the LNA
construction results in spectra with a sharp drop-off in power for
periods longer than 10 years (as expected).

More realistic tree-ring pseudo-proxies could be created by
using the GCM to drive a forward model of tree growth, such
as that proposed by Shashkin and Vaganov (e.g., Shashkin and
Vaganov 1993; Evans et al. 2006). As a result, the pseudo-proxy
time series would approximate more closely the actual proxy
time series (i.e., the makeup of the “lab animal” would be closer
to that of the “patient”).

Pollen pseudo-proxies are created by averaging the model
output over a number of 7.5◦ × 7.5◦ regions, adding noise,
calculating an 11-year running mean, and then sampling every
30 years. This reflects the fact that pollen assemblages record
information about the climate over large spatial and long tem-
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poral scales. For example, the species composition of a forest
stand responds gradually to changes in the climate, while the
pollen produced by that stand can travel considerable distances.
The implication that an observation of the proxy for a given
year contains information about the climate in both the past and
the future is perhaps more justified in the case of pollen prox-
ies, which are measured by analyzing small segments of sedi-
ment, often from lake-floor cores. Various physical and biolog-
ical mechanisms can mix the pollen deposited over a number
of years, while the measurement process itself could involve
sediment accumulated over more than one year.

Borehole pseudo-proxies are formed from spatial averages
over 20◦ × 20◦ regions by application of the POM-SAT model,
which describes the diffusion of surface-temperature pertur-
bations through the bedrock. LNA use POM-SAT to simulate
borehole temperature profiles down to 500 m, and then they
sample this depth profile every 5 m. The details of the POM-
SAT model are not provided.

LNA assume that a borehole profile provides information
about surface temperatures at large spatial scales. As a temper-
ature anomaly needs to propagate through rock, to where the
measurement takes place, the spatial scale of the information
might be considered similar to the depth scale. If this were so,
we find the choice of 20◦ × 20◦ regions to be too large. By
forming the borehole pseudo-proxies from such large regions,
LNA likely overemphasize the information in actual borehole
proxies for inferring the NH (spatial mean) temperature time
series. Their borehole pseudo-proxy construction was proba-
bly motivated by the observation that surface temperatures av-
eraged over longer time scales tend to reflect larger spatial
scales. A fully Bayesian reconstruction of temperature in the
San Rafael region of Utah from borehole proxies is given by
Brynjarsdóttir and Berliner (2010).

A better approach would involve constructing the borehole
pseudo-proxies from local GCM output, and then using an
HM with a spatial component to reconstruct the temperature
field through time, not just the NH spatial average. Ideally, this
would be calibrated to the heat equation that governs the tem-
poral evolution of subsurface temperatures for which surface
temperatures are boundary conditions. The data level of such
a hierarchical model could represent the borehole data as re-
flecting local temperature, smoothed through time, while the
process level could model a temperature field that becomes in-
creasingly smooth in space as temporal smoothing increases.
We say more about the introduction of a spatial component in
Section 6.

For all three classes of pseudo-proxies, LNA add noise to the
local GCM temperatures before forming the pseudo-proxies.
In other words, additive white noise, as well as the GCM out-
put, are subject to the transforms that create the pseudo-proxies.
This decision is motivated by the observation that actual pollen
and borehole proxies appear somewhat “smooth” in time. The
notion that borehole proxies are temporally smooth is reflected
in the data level, as the noise term is also subject to the trans-
formation MB [LNA’s (4.3)]. This is not the case for the pollen
pseudo-proxies, which are modeled at the data level as being
subject to additive AR(2) noise [LNA’s (4.2)]. The tree-ring
pseudo-proxies are likewise modeled at the data level as being
subject to additive AR(2) noise that is not filtered by the trans-
form matrix MD [LNA’s (4.1)]. In short, we see something of a
disconnect between the observed properties of proxies, pseudo-

proxy constructions, and the assumptions made at the data level
of the HM.

LNA investigate the potential of borehole, pollen, and tree-
ring proxies, along with estimated time series of forcings, to
reconstruct NH mean temperatures. However, as they state
clearly, their methodology has not been tested on actual data.
In their experiment, the parameters used to transform the GCM
output into pseudo-proxies are assumed known—the matrices
MD, MP, and MB that appear in the data level of the model
are used to construct the pseudo-proxies. In real paleoclimate
reconstructions, this will not be the case. For example, the as-
sumption that a pollen observation reflects some weighted av-
erage of temperatures over a number of years is likely reason-
able, but the number of years reflected in that observation, and
the weights associated with the averaging, will in general not be
known.

LNA assume that each pseudo-proxy time series has a (dif-
ferent) linear relationship with the transformed unknown tem-
peratures T; for each time series, they infer two regression pa-
rameters, and for each proxy type they infer three parameters
[two AR(2) coefficients and a variance] for the error process.
For 15 tree-ring time series, this amounts to 2 · 15 + 3 = 33
parameters.

Another strategy would be to infer the averaging weights in
the matrices MD, MP, and MB, in which case the scaling coef-
ficients (βi,D, βj,P, and βk,B) in the data model are redundant.
We shall now investigate the consequences of this for tree-ring
proxies. If the matrix MD is assumed to represent a stationary
linear transform of the temperatures T within plus or minus five
years of a given observation, then an additional 11 parameters
must be inferred. If there are 15 tree-ring proxies, each with an
intercept only, and assumed to have common error process pa-
rameters, then there are 11 + 1 · 15 + 3 = 29 parameters to be
estimated for the tree-ring proxies. As the matrices MD, MP,
and MB are not known in real-world applications, this (slightly
more parsimonious) model may be more realistic. The impacts
of these differing modeling choices would certainly be of inter-
est to the scientific community and could be included in a future
simulation experiment.

In this paper, LNA have tested the ability of a BHM to re-
construct past temperatures, given pseudo-proxies obtained by
applying different, known transforms to the climate-model out-
put. While these transforms are constructed to reflect aspects of
tree-ring, pollen, and borehole proxies, they are at best simple
approximations to the processes that generate the actual prox-
ies. In addition, assuming that these transforms are known elim-
inates a source of uncertainty which, in real-world applications,
could be large. To sum up our discussion in this section, we see
many ways that the “lab animal” is different from the “patient.”

4. THE HM USED FOR RECONSTRUCTING
PAST CLIMATE

4.1 Hierarchical Modeling Choices

There are several choices made by LNA when building the
HM in their Section 4.1. First, they introduce forcings S (so-
lar irradiance), V (volcanism), and C (greenhouse gases, rep-
resented by the concentration of CO2) into the model. Strictly
speaking, the forcings should appear in the process model (4.5)
in terms of their “noise-free” versions, S0, V0, and C0. In terms
of the probability structure defined by LNA’s HM, all distribu-
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tions are in fact conditional on S and C. This is an assumption
that we invite LNA to comment on. Was the reason for this a
pragmatic one that kept the number of unknowns to a manage-
able size? Notice that a data model for S and C would introduce
unknowns S0 and C0 into the HM and hence into the MCMC.

There was another hierarchical modeling decision made by
LNA that we would like to invite comment on. While it is not
explicitly stated, LNA assume that the observed instrumental
temperatures T2 have no measurement error; however, this does
not seem to reflect paleoclimate scientists’ understanding (e.g.,
Brohan et al. 2006). Therefore, we suggest that the data stage
should include one more equation:

T2 = T2,0 + ε2.

Then, at the process-stage, their (4.5) should be in terms of
(T′

1,T′
2,0). In fact, we find the notation, T1, for past temper-

ature misleading; in line with other notation, we suggest that
it be replaced with T1,0. Consequently, when LNA state [just
after (4.5)], “The target is to estimate T1 given T2, the proxies
and the forcings,” we suggest that their target should be to make
inference on the unknown T1,0, given the temperature data T2.
Moreover, we would extend this to making inference on the un-
known T2,0 as well.

It is clear that LNA have assumed var(ε2) = 0, without
explicitly stating it. Even if it were true, we find that it
helps to distinguish between the (potentially) observed tem-
peratures, T = (T′

1,T′
2)

′, and the unknown true temperatures,
T0 ≡ (T′

1,0,T′
2,0)

′. Then (4.1), (4.2), and (4.3) should be for-
mulated conditional on T0, and the focus of the study would
be on gaining knowledge about the unobserved past tempera-
tures, T1,0 (and T2,0 as well), from all relevant data sources
(including T2).

4.2 Spatial Sampling Issues

LNA provide justification for the spatial distribution of the
pseudo-proxies they chose (Figure 2 of LNA) for only the bore-
holes, saying in this case that the “distribution of those loca-
tions reasonably represents the spread of real borehole data.”
Now consider the particular spatial distribution they chose for
the tree-ring pseudo-proxies (Figure 2 of LNA). First, a num-
ber of the tree-ring pseudo-proxies are located in the South-
ern Hemisphere, despite their goal of wanting to reconstruct
NH mean temperatures. Second, LNA locate several tree-ring
pseudo proxies in the tropics, despite the fact that trees in the
tropics do not generally develop annual rings, due to the the lack
of strong seasonality. Third, LNA locate a tree-ring pseudo-
proxy in Eastern Greenland, north of 75◦N, and certainly north
of the tree line.

More generally, the spatial distribution of the pseudo-proxies
presumably impacts their ability to infer the NH spatial aver-
age. All things being equal, we might think that a regularly
spaced distribution of locations would be preferred (see, e.g.,
Aldworth and Cressie 1999). However, the surface-temperature
field is inhomogeneous and the spatial distributions of tree-ring
and pollen proxies used in any actual application are limited to
particular geographical areas. Indeed, the locations of proxies
in published reconstructions (e.g., Mann et al. 2008) could have
been used to inform the locations of the pseudo-proxies, but this
was not a factor controlled in LNA’s experiments. We suggest

that in a future simulation experiment, the opportunity should
be taken to consider the effect of spatial locations of proxies on
inference for NH mean temperatures.

4.3 Accounting for Nonlinearities in the HM

We have already noted in Section 3 that each pseudo-proxy
time series is linearly related to the true temperature time series.
There is growing evidence that some tree-ring proxies, partic-
ularly those at high northern latitudes, have become less sensi-
tive to changes in local temperature over the last few decades
(Briffa et al. 1998; Jones et al. 2009). This so-called “diver-
gence” problem could be explained by nonstationarities or non-
linearities in the tree-ring temperature relationship, or by the
presence of confounding covariates that are generally not in-
cluded in paleoclimate reconstructions. The problem with cap-
turing nonlinearities in the data stage of an HM (as do LNA)
is that the nonlinearities are assumed part of the measurement
error and filtered out by the posterior analysis.

We would like to finish this section by augmenting our dis-
cussion of LNA’s Equation (4.5). They assume that the forcings
in (4.5) are additive in S (or S0), V0, and C (or C0), an assump-
tion that seems to be supported by the IPCC’s Fourth Assess-
ment report (Forster et al. 2007). However, this only refers to
the lack of interaction between the S, V0, and C. Now, the ra-
diative forcing associated with CO2 increases as the log of the
mixing ratio (Forster et al. 2007). Furthermore, it seems clear
from LNA’s Figure 1 and the multiplicative measurement error
in their (4.4), that V0 should also be expressed on the log scale.
Therefore, we suggest that Equation (4.5) be modified to be ad-
ditive in S, log(V0), and log(C), where the log of a vector is
interpreted as the vector of elementwise logs.

5. INFERENCE IN THE PRESENCE OF
UNCERTAINTY: WHAT ARE THE QUESTIONS

AND HOW ARE THEY ANSWERED?

LNA’s scientific goal is to investigate the value of including
proxies with different spatial and temporal relationships, as well
as various forcings, into a paleoclimate reconstruction based on
posterior analysis. Their statistical goal is to assess a computer
simulation experiment designed around how an HM includes
aditional data for paleoclimate reconstruction.

Their posterior analyses are done carefully but, as discussed
in Section 2, we believe the design lacks a competing method-
ology and there should be some replication. Perhaps the lack
of replication is an explanation for the questions below. In Fig-
ure 5, under the factor combination (Noise, T1, D), the “forc-
ings” bias is extemely negative, resulting in a worse rmse when
forcings are included. Does this make sense? Also, does the
borehole proxy really lead to a less-biased reconstruction? And
shouldn’t the “oracle” be best in terms of virtually any skill
measure? (It’s not; see their supplementary material.)

A lot of effort was put into understanding which factors in
the reconstruction are important; the end product is a compari-
son of a number of possible reconstructions, based on the bias
and mean squared prediction error of posterior means. (We be-
lieve that LNA used posterior means, but we could not actually
find where they specified which posterior summary was used to
define the reconstructions.) Coverage rates of posterior credible
intervals are investigated in LNA’s supplementary material and,
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there, the performance of even the “oracle” is quite poor. (The
coverage rate is an attractive measure of skill since it is unitless
and intuitively interpretable.) For example, with a nominal cov-
erage rate of 90%, the oracle proxy only gives 65% coverage!
Presumably, this difference is an indication of the inherent lim-
itations involved in inferring the NH mean using proxies at the
particular locations used by LNA.

Is this experiment applicable to real-world proxies? We have
already mentioned that the matrices MD, MP, and MB, given
in their data stage, are not known in practice. Either estimat-
ing them, putting a prior on them, or carrying out a sensitivity
analysis should be done before applying the HM proposed by
LNA to real-world data.

LNA investigate the interaction of proxy and climate-forcing
information in their roles of reconstructing climate. They inves-
tigate the impacts of including different combinations of prox-
ies, of including noise in the proxy construction, including the
forcing time series, and of modeling the temperature process
over the entire time span or only over the reconstructed time
interval. They conclude that it is important to include informa-
tion about the target time series at a wide array of frequencies.
If tree rings only reflect high-frequency climate variability (as
is assumed by LNA), then including the different forcing time
series improves results. Including proxies that reflect the lower-
frequency variability of the target times series can partially re-
place the role of the forcing time series. These are nice, “take-
home” conclusions, and they extend the results of Moberg et al.
(2005) to include the effects of climate forcings. A consistent
message seems to be that having information on different time
scales is essential for arriving at skillful reconstructions of past
climate.

According to the process stage of the model [Equation (4.5)
from LNA] the NH mean temperature time series is a linear
combination of the three forcing time series plus AR(2) noise.
It would be interesting to re-run the analysis using different
combinations of the forcing series, to investigate, for exam-
ple, the impact of including solar variability in the model. (Cli-
mate change skeptics often attribute temperature changes to so-
lar forcings, in place of the more common attribution given to
greenhouse gases.) This would address the influences of the var-
ious forcing time series, similar to the way in which LNA ad-
dress the influence of the various types of pseudo-proxies.

There are several other factors that could be investigated,
which we have discussed earlier but group together here: Are
the results robust to different runs of the climate model, or to
output from different models? The spatial network of proxies
is held fixed across all experiments, although the spatial distri-
bution of these series must have an impact on their ability to
infer NH mean temperature. How variable are the results as a
function of the spatial network? What is the optimal spatial de-
sign, and is this dependent on the GCM output or the particular
GCM chosen? Finally, LNA discuss the possibility of dating
errors when dealing with actual proxy time series, particularly
for pollen observations. Sensitivity to mild dating errors could
have been explored in their experiment.

6. SPATIAL MODELING FOR
PALEOCLIMATE RECONSTRUCTION

The spatial aspect has not been featured in LNA’s data stage
or process stage, something we would like to discuss in this sec-
tion. We have suggested above that T0 is the appropriate time

series of temperature, where the spatial component has been av-
eraged out over the NH. Now think of a time series of spatial
temperature processes, which we write as {T0,1(s) : s ∈ globe},
{T0,2(s) : s ∈ globe}, . . . , the present-day temperature process
over the globe. Write this time series of spatial processes as
T0(·). Then the spatial component might be introduced into the
data stage through spatially varying parameters in (4.1), (4.2),
and (4.3), including parameters found in MD, MP, and MB (see
our Section 3). The current LNA model relates each proxy ob-
servation to a number of years of the NH mean times series (via
the matrices MD, MP, and MB). A spatial adaptation of MD
would reflect the local (in space) temperature value, whereas
that of MP would reflect regional temperature values. As dis-
cussed above, it is our view that MB should reflect the local
temperature value, but with a space–time covariance that mod-
els an increasing spatial range with longer temporal averaging.
Clearly, the curse of dimensionality needs to be taken into ac-
count when including spatial dependence in the model, which
we discuss below.

At the process stage, the forcings likely mix well enough over
annual time scales that we do not have to include any spatial
variability in that part of the model. However, the error term εT ,
which accounts for process variability in LNA’s key regression
Equation (4.5), should now be spatio-temporal with nonstation-
ary spatial covariances.

With all this extra structure, any posterior analysis runs
the risk of being overwhelmed by high dimensionality. One
way to reduce the dimensionality is to use a spatio-temporal
random effects (STRE) model, as in Cressie, Shi, and Kang
(2010), where a spatio-temporal analysis was done on a very
large remote-sensing dataset. In LNA’s terminology, write
the (now) spatio-temporal error εT in their (4.5) as εT ≡
(ε′

1,ε
′
2, . . . ,ε

′
t, . . .)

′, and assume

εt ≡ Stηt + ξ t; t = 1,2, . . . ,T,

where the matrices {St : t = 1,2, . . . ,T} are made up of known
spatial basis functions and {ηt : t = 1,2, . . . ,T} is an r-dimen-
sional vector autoregressive time series. Importantly, r is fixed.
In Cressie, Shi, and Kang (2010), r was on the order of 100.
The last term in the STRE model, {ξ t : t = 1,2, . . .}, captures
fine-spatial-scale variability.

The STRE model inherits nonseparable, nonstationary spa-
tio-temporal covariances, an attractive feature since stationar-
ity is not expected over a global spatial scale and a millen-
nial temporal scale. Critically, the dimension reduction allows
very fast matrix inversions in an MCMC. Tingley and Huy-
bers (2010a, 2010b) present a spatio-temporal BHM for paleo-
climate reconstructions that assumes separability of the spatial
and temporal variability in order to achieve a computationally
feasible MCMC. Both approaches use a sequential updating
procedure to speed up inferences and they are O(T) in com-
putational complexity. The dimension reduction appears to be
needed when spatial-data sizes go beyond about 2000 observa-
tions per time point.

Including a spatial model will produce estimates of the spa-
tial mean and its associated uncertainty that are consistent
across global, hemispheric (including the NH), continental, and
regional scales. Indeed, results included in LNA’s supplemen-
tary material point to the limitations of inferring a spatial av-
erage without modeling the spatial covariance. LNA compare
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reconstructions based on the oracle proxies to those based on
dendro and pollen proxies using rank-verification histograms.
They note that the shapes of the rank-verification histograms
are the same for each, but that the time series of temperature
observations at the particular set of locations they have chosen
cannot capture all aspects of the spatial average temperature.

7. CONCLUSIONS

LNA have presented an HM for reconstructing past climate
from various types of (pseudo-)proxy and forcing information,
which represents a 21st-century statistical approach to paleocli-
mate reconstruction. One of the great advantages of an HM is
the conceptual ease with which different forms of uncertainty
can be included, as well as the transparency of the physical
and statistical modeling assumptions. While we feel that there
are a number of aspects of LNA’s HM that could be improved
upon, their efforts do represent a substantial step forward for
the paleoclimate-reconstruction community, whose statistical
approaches are summarized in NRC (2006). The suggestions
we have made are in support of posterior analysis from an HM
approach, and LNA’s paper indicates that posterior analysis on
actual paleoclimate data will advance our understanding of the
Earth’s past climate (as well as quantify the associated uncer-
tainties). We look forward to such efforts appearing in the liter-
ature in the near future.
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1. INTRODUCTION

This is a wonderful time to work on the reconstruction of past
climates. For periods prior to the modern era of instrumental cli-
mate data we are reliant on quantitative “proxy” information to
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indirectly “reconstruct” climatic conditions, and in some situa-
tions nonquantitative historical documentation is also useful for
this purpose. Proxy-based climatic information has been shown
to be remarkably effective at capturing longer-term and shorter-
term climate information in preinstrumental times (pre ∼1850–
1950, depending on the climate variable and location) in a wide
variety of situations, and has led to crucial breakthroughs in un-
derstanding earth system history and dynamics. A longer-term
example is the documentation of glacial-interglacial cycles over
the past ∼2.75 million years, and linking these to variations
in earth’s orbital eccentricity, obliquity (tilt), and precession
(when orbital extremes occur during the cycle of seasons) (Im-
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brie and Imbrie 1979). A shorter-term example is the recogni-
tion that very long and intense droughts have occurred in North
America and eastern Asia (as examples—these are the regions
with the most complete paleodrought coverage), which have
lasted far longer than the worst droughts in the instrumental
record that have been used for planning in water management
applications (e.g., Cook et al. 2004). Paleoclimate reconstruc-
tion is currently in a time of explosion in both interest in its
results and the development and testing of new methods. The
work by Li, Nychka, and Ammann (this issue) to study the
capabilities of Bayesian Hierarchical Modeling for use in pa-
leoclimate reconstruction is an important “new shoot” of this
development.

2. TECHNICAL BACKGROUND

In many applications, proxy information can be calibrated
against a climatic variable (or variables) of interest. In some
cases, such calibrations can be physically deterministic, de-
rived from first principles and/or carefully controlled laboratory
experiments. More typically, they are purely statistical, devel-
oped over a period of common overlap between the climate and
proxy data, and then the calibration relationship is applied to
yield quantitative estimates of the climate variable as far back
in time as the proxy data allow. Both kinds of calibration as-
sume stationarity of the relationships modeled over time, as
does the Bayesian hierarchical approach evaluated by Li, Ny-
chka, and Ammann. Statistical calibrations have involved a va-
riety of simple to more complex mathematical models, often
utilizing one of a number of regression-based approaches. Two
of the most common are: (1) direct (or indirect) regression of
the proxies against, for example, temperature, in either simple
or multiple regression forms (cf. Frank et al. 2010); and (2) a
more complex process in which one of these closed-form re-
gression approaches (or an iterative procedure such as regular-
ized expectations maximization, RegEM) is used fit the proxy
data to the component time series weights of an orthogonal spa-
tial decomposition of the target instrumental data field, and the
resulting fitted component time series are then input back into
the appropriate eigen/singular value (SV) expansion to yield es-
timated spatial fields (e.g., Luterbacher et al. 2004; Mann et
al. 2007, 2009). These methods have proved very effective in
making expected value reconstructions of climate at both single
sites and for entire climate fields up to global scale. Simulta-
neous whole-field reconstructions, in particular, have been one
of the key successes of these approaches, because they pro-
vide site-to-site-consistent spatial information about a dynam-
ical system (climate) that is inherently spatial in its character.
(In this context, it is worth keeping in mind that even with
modern instrumentation, including satellites, providing system-
atic whole-field climate data coverage remains difficult.) In ad-
dition, a variety of methods for validating reconstruction re-
sults have been derived from mathematical statistics, including
econometrics and the theory of calibration and validation (cf.
Cook, Briffa, and Jones 1994; Wahl and Ammann 2007). Ad-
ditional work is currently being done in this area to refine and
extend the efficacy of validation methods. Much work is also
underway to consider the impact of, and solutions for, classi-
cally known problems in regression such as errors-in-variables
(EIV), heteroscedasticity, multicollinearity, etc. (e.g., Hegerl et

al. 2007; Mann et al. 2007; cf. Ammann, Genton, and Li 2010
both for new methodology and for a good review of the rele-
vant literature). For example, one reason (among several) for
using eigen/SV decompositions is to help limit stochastic noise
in the instrumental and proxy data by truncating the eigenvec-
tors/EOFs used in the reconstruction process, in particular to
help reduce EIV issues when the form of the regressions is
climate = f (proxy).

3. USE OF BAYESIAN METHODS

Perhaps most importantly at the current time, much work is
being done to develop appropriate models that can be used to
generate reconstruction ensembles, for the purpose of character-
izing reconstruction uncertainty. This work includes (but is not
limited to): (1) identifying stochastic models for this purpose
and then applying these via Monte Carlo methods to make ran-
dom draws from the estimated distribution of reconstructions
(Li, Nychka, and Ammann 2007; Supplemental Online Mater-
ial here); and (2) a more “engineering” style approach that de-
scribes reasonable ranges of free analyst choices in model spec-
ification per se, and then uses all possible models within these
ranges to generate the reconstruction ensemble from which
draws can be taken (Frank et al. 2010). It is, of course, possible
to combine these approaches to evaluate the combined effects
of stochastic and model selection uncertainties. The work of
Li, Nychka, and Ammann in this issue is part of a fundamen-
tally new approach to the problem of generating statistically ap-
propriate ensemble distributions of reconstructions from which
random draws can be taken (e.g., Haslett et al. 2006). In this
approach, a clearly specified hierarchy of mathematical mod-
els is formulated as conditional probability density functions,
which can then be combined via Bayes’ Theorem to yield an
estimated joint posterior distribution of the climate variable(s)
being reconstructed, the proxies used in the process, and the
parameters in the hierarchical model. The hierarchy of mod-
els in this formulation has three stages: (1) a data stage, in
which the proxy or proxies used in the reconstruction are mod-
eled in a “forward” way as causally dependent on the climate
variable(s) of interest; (2) a process stage, in which the climate
variable(s) is (are) modeled, for example, as a simple autore-
gressive process or, more appropriately from a physical stand-
point (as Li, Nychka, and Ammann do), as causally dependent
on known factors that “force” the climate system (such as solar
output, volcanic aerosol release, and greenhouse gas concentra-
tions); and (3) the assumed prior distributions of the unknown
parameter values at both the data and process stages.

Although complex, this Bayesian hierarchical modelling
(BHM) approach offers distinct resources in relation to the
“traditional” reconstruction approaches mentioned above. First,
and most importantly, the specification of the full model in an
explicit mathematical/statistical form that leads to direct esti-
mation of the posterior distribution means that full uncertainty
estimation is inherent in the reconstruction process from start
to finish. It does not have to be developed in a component-by-
component manner that runs a risk of becoming, to a lesser
or greater degree, ad hoc, or simply not tractable per se. Sec-
ond, explicit specification of the mathematical reconstruction
model used allows each part of the reconstruction process to
be formally examined for its physical realism, climatological
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validity, etc. This transparency of assumed model(s) is not al-
ways as easily considered in the other approaches mentioned.
Third, especially when the process stage model relates the cli-
mate to its known forcing factors, the use of forward models in
the data and process stages is more physically realistic in terms
of cause-and-effect relationships than the common specifica-
tion of physically “inverse” models, for example, of the form
climate = f (proxy).

Li, Nychka, and Ammann apply the BHM approach in
a reconstruction simulation experiment (RSE) context, con-
structing the data models and deriving climate information (in
this case, average Northern Hemisphere surface temperature)
from a long paleoclimate run of a complex three-dimensional
atmospheric-ocean general circulation model (AOGCM). The
RSE approach represents a major step forward in examining
paleoclimate reconstruction efficacy, providing an experimen-
tal “test bed” in which reconstruction approaches can be eval-
uated prior to implementation on real-world data. Li, Nychka,
and Ammann exploit the RSE context to examine a factorial set
of simple to more complex BHM designs. Relaxing the physi-
cally realistic process model of temperature driven by climate
forcings to a simple mean function allows examination of the
usefulness of incorporating forcing data in the reconstruction
process, which has only begun to be systematically explored
in paleoclimate science (cf. Lee, Zwiers, and Tsao 2008, who
examine use of the Kalman filter for this purpose in a seminal
RSE study).

Li, Nychka, and Ammann’s design additionally allows ex-
amination of another important area of development in climate
reconstruction: the value of using one proxy type only (preserv-
ing homogeneity of climate response characteristics, but with
potential frequency sensitivity limitations) versus the combin-
ing of proxies with different response characteristics, but with
a wider range of frequency sensitivities (e.g., Moberg et al.
2005). They construct simulated proxies with three kinds of fre-
quency sensitivities to enable this examination, each with and
without a stochastic noise component: (1) a high-frequency-
only proxy (defined as carrying annual-to-decadal resolution),
sampled at annual time steps (mimicking a potential worst-
case of the information available in tree rings); (2) a mid and
low-frequency proxy (defined as carrying decadal-to-lower res-
olution), sampled at 30-year time steps (mimicking the infor-
mation typically available from pollen preserved in sedimen-
tary deposits); and (3) a low-frequency-only proxy (defined as
carrying multidecadal-to-multicentennial resolution), sampled
at 100 five meter depth intervals (mimicking the information
available from borehole temperature profiles as a partial func-
tion of heat diffusion from the surface, which is increasingly
smoothed the farther in the past a surface temperature anomaly
occurred). (Note that the relationship of depth to time in the dif-
fusion model is not described by the authors.) Li, Nychka, and
Ammann also add what they term an “oracle proxy,” which is
formed as the “true” model temperature time series at the proxy
locations, with and without stochastic noise (allowing exami-
nation of the extent to which these locations carry sufficient in-
formation to capture the full hemispheric mean). This richness
of factorial examination is unique in the RSE literature to date,
and is even more powerful when combined with examination of
the presence/absence of forcing information.

It should be noted that RSE comparison of reconstruction
models, noise levels, proxy richness and spatial coverage, cal-
ibration choices, and other factors has been done in this rela-
tively new area of study, although typically only one or a few
factors are evaluated in a given study (cf. Mann and Ruther-
ford 2002; Rutherford et al. 2005, 2010; Bürger, Fast, and
Cubasch 2006; Ammann and Wahl 2007; Mann et al. 2007;
Lee, Zwiers, and Tsao 2008; Jones et al. 2009; Riedwyl et al.
2009; von Storch, Zorita, and González-Rouco 2009; Smerdon
et al. 2010). The kind of richer factorial RSE developed by Li,
Nychka, and Ammann in a BHM context can also be done with
the traditional reconstruction methods described. Large n-way
sets of simulated proxy data could be developed that include
stochastic noise components, and these could be used in vari-
ous reconstruction scenarios in Monte Carlo fashion. Forcings
information could also be incorporated in a variety of ways.
However, carrying over uncertainty estimation into a real-world
context would continue to be less “natural” than in the Bayesian
context, as described.

4. SIMULATION RESULTS

4.1 Inclusion of Forcing Information

The results from Li, Nychka, and Ammann’s examination
show several salient features. Most prominently, the inclusion
of forcing information generally leads to greatly improved re-
constructions, especially in terms of reduction of variance.
Forcing information also is greatly valuable to reduce recon-
struction bias when the temperature process model is assumed
to be constant across both the known, instrumental time period,
and the time period to be reconstructed utilizing the proxy data.
When this assumption is relaxed (representing a partial relax-
ation of the stationarity assumption described above) bias is
generally unaffected by inclusion of forcing information, with
the exception of reconstructions based on noisy tree ring in-
formation only, in which case adding forcing information in-
creases bias towards too-low values. Although this relaxation
leads to reduced bias (which can be noted particularly in the ab-
sence of noise in the proxy data), it is associated with increased
variance, which should be taken into account before choosing
this variant of the BHM over its stationary complement.

4.2 Inclusion of Different Kinds of Proxy Information

When pollen-type proxy data are included with either tree
ring or borehole-type data, or these types combined, the value
of forcing information to reduce bias under the full stationarity
assumption is significantly lessened. The inclusion of pollen-
type information also reduces variance in all cases. These re-
sults suggest that the mid-to-low frequency information carried
by the pollen data represents a significant portion of the addi-
tional information content that the forcing data carry and could,
to an extent, substitute for the forcing information. It should be
noted that establishing the depth-age relationship in the sedi-
mentary deposits from which fossil pollen is typically extracted
depends on dating methods that carry significant inherent im-
precision and age-dependent possibilities of bias (such as 14C
dating), and can also be affected by offsets in the time of pollen
production versus its deposition, similar offsets between pro-
duction of the material dated and its deposition, nonconstant
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rates of sedimentation that make interpolation between dated
strata uncertain, and other factors. These sources of error could
potentially be modeled in the BHM framework (cf. Haslett and
Parnell 2008), but would introduce additional imprecision in
the information content of pollen data. Thus, the frequency ca-
pacity assumed in Li, Nychka, and Ammann’s tests is a best-
case situation (approached in the real world at relatively rare
sites that produce annual/subannual depositional bands called
varves, which, presumably, can be counted like tree rings), and
the partial capacity of pollen-derived information to substitute
for forcing data in BHM reconstructions likely represents a the-
oretical optimum that is not generally obtainable in practice.

By construction, tree-ring-type data are necessary to obtain
higher-frequency information at subdecadal time scales in Li,
Nychka, and Ammann’s tests. This kind of dependence is also
seen in many real-world paleoclimate reconstruction situations,
and the availability/unavailability of dendrochronological infor-
mation is one of the key features that differentiate paleoclima-
tology of the past 1–2 millennia from reconstruction work fur-
ther back in time. That very low frequency information pro-
vided by borehole-type data had little effect on reconstruction
quality is surprising, and likely is due to the age-related smooth-
ing of borehole information the farther one goes back in time.
However, the geographic coverage of boreholes is extensive,
and exploiting them for the kind of low frequency information
they can offer, whether within a BHM framework or not, con-
tinues to be a valuable tool to paleoclimatologists, not least be-
cause the inversion relationships that underlie borehole recon-
structions are based on well-established physical laws of heat
diffusion in solids.

5. LOOKING TO THE FUTURE

The BHM RSE study by Li, Nychka, and Ammann, along
with a few empirical studies using Bayesian approaches,
demonstrates that Bayesian methods, and the BHM structure
in particular, represent an important new application in the
toolkit of paleoclimate reconstruction. By offering an explicit
model structure and systematic treatment of uncertainty from
“start to finish,” BHM offers both a new methodology and
a reference point for work to extend traditional paleoclimate
methods to build well-composed reconstruction ensembles. It
will be particularly valuable to make carefully designed paral-
lel comparisons between BHM and traditional reconstruction
methods extended to generate true ensembles; to determine the
relative efficacy of both approaches for understanding past cli-
mates, and also to examine potential issues in terms of com-
putational effort and effects that may be caused by relative sta-
bility/instability of estimated parameters in the BHM frame-
work. Dealing with dating issues involved with any kind of
proxy that is not associated with a physical process with reg-
ular time steps (annual growth characteristics in trees, varves
in sediments, etc.) is another clear avenue for refinement, as
mentioned. Additional dimensions in RSE analyses of BHM
performance that would be valuable to incorporate include:
(1) joint analysis of more than one climate variable, for ex-
ample, temperature and precipitation; (2) employing more than
one AOGCM run, to enable isolation and elimination of model-
specific outcomes; (3) examination of seasonal as well as an-
nual reconstruction performance, as annual averages can mask

important seasonal variability; and (4) relaxation of the assump-
tion of time-invariant noise processes, which is recognized as
nontrivial and beyond the scope of the design used by Li, Ny-
chka, and Ammann.

5.1 Extending BHM Methods to Reconstruct Spatially
Explicit Climate Data

Extending BHM methods to reconstruct spatially explicit cli-
mate data, for example, regularly gridded data comprising cli-
mate fields in latitude-longitude space, is a new frontier for sig-
nificant further effort, following the pioneering work of Tin-
gley and Huybers (2010a, 2010b). As mentioned, a key success
of paleoclimatology has been the development of simultaneous
whole-field reconstruction approaches, one of the challenges of
which is to properly characterize uncertainty. This is a chal-
lenge to which application of the BHM approach could be ex-
pected to add significant capacity, again both methodologically
and as a reference point for improving traditional reconstruction
methods. An intriguing possibility in this regard would be to in-
clude spatial climate information produced by AOGCMs (and
their successors, earth system models, or ESMs) at the process
model stage in the BHM, in an analogous manner to the way
forcing information is used by Li, Nychka, and Ammann. An-
other issue that arises for spatial climate reconstructions is that
logically they should be weighted in reconstruction skill analy-
ses to take into account the fact the climate system has “nodes”
of particular sensitivity or importance for the entire earth (e.g.,
the tropical Pacific involved in the El Nino-Southern Oscilla-
tion phenomenon and the North Atlantic region). Accounting
for spatially varying importance of reconstruction success in
building validation schemes for spatial climate reconstructions
is a nontrivial issue, as it is in weather forecasting, and the ap-
plication of BHM methods to help in this work could be highly
valuable.

5.2 Refining the Data Models Used in BHMs

Finally, significant work could be done to refine the data
models used in BHMs for climate reconstruction. The bore-
hole model used by Li, Nychka, and Ammann is realistic at
a first-order level, but the tree ring and pollen models are less
realistic and deserve significant refinement. Work is currently
being done in developing biophysical models of seasonal tree
growth driven by a small set of key climatic variables, which
carries potential for being incorporated into BHM-based recon-
structions (e.g., Evans et al. 2006). The authors are developing a
more realistic model for pollen response to temperature, which
is described in general terms in Section 5.3 and applied and
tested in the Supplemental Online Material (SOM) (cf. Korhola
et al. 2002; Haslett et al. 2006). Adding these, and/or other,
data model refinements will amplify the inherent strength of
the BHM approach in terms of explicit specification of the hi-
erarchical reconstruction model. Of particular interest would be
to combine such data model refinements with the incorporation
of ESM output at the process model stage, described above.
Pursuit of these goals provides important direction for further
development work of the kind set forth by Li, Nychka, and Am-
mann.
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5.3 A Binomial-Logistic Pollen Data Model for Use
in BHM Reconstruction of Temperature

Modern paleoenvironmental reconstruction from fossil pol-
len data often attempts to take advantage of the fact that pollen
“assemblages” archived in sedimentary deposits are generally
rich in taxonomic (i.e., plant type) diversity. To produce a more
realistic pollen data model for use in real-world applications
of the BHM, however, it was decided to define a “reduced-
space” taxonomic model that would be parsimonious in intro-
ducing additional parameters that need to be estimated within
the BHM. To be even more parsimonious, another possibility is
to estimate the pollen model separately, which could then be in-
corporated in the BHM to serve a role analogous to the transfor-
mation matrices utilized by Li, Nychka, and Ammann to define
the “forward” (i.e., causal) relationships between climate and
proxy information [the “M” matrices in their Equations (4.1)–
(4.3)].

To meet these criteria, a refinement of the traditional pollen
ratio method (cf. Adam and West 1983) was developed. The ra-
tio method has been known for some time to be a useful tool in
pollen-based paleoclimate reconstruction: in situations in which
one (or a few) dominant pollen type(s) in a region have a strong
positive correlation with a climate variable of interest and an-
other (or a few) dominant pollen type(s) have a strong nega-
tive correlation with the same climate variable. A classic ex-
ample of this situation occurs in the coastal mountain regions
of California, where oak (Quercus) and pine (Pinus) pollen
representation, respectively, vary inversely in relation to tem-
perature (Adam and West 1983; Wahl 2003). When counts of
these pollen types are combined as Pinus/(Quercus + Pinus)
or Quercus/(Quercus + Pinus) ratios, a mathematically appro-
priate estimation form (which generally has not been utilized in
this context) is the binomial logistic generalized linear model
(GLM) (Gelman et al. 2004).

The GLM also can readily model this relationship in the for-
ward form of pollen = g(climate), which is more physically re-
alistic in terms of the direction of causation. The specification
of such a forward model is shown below:

rnum ∼ Bin(n,p),

where

E(r|T) = p = exp(η)/[1 + exp(η)],
and

η = α + β(T).

Here, r is the pollen ratio formed as above, rnum is the ratio
numerator, n is the ratio denominator (i.e., the sum of pollen
counts), the denominator-specific count is (n − rnum), and T is
the temperature at each site corresponding to a specific value
of r.

As described further in the SOM, α and β were estimated
using the GLM algorithm (in the R language), yielding fit-
ted values of p = E(r|T) for given values of T . These fitted
E(r|T), T combinations were then compared with the actual
sampled r, T pairs to determine how much of the total GLM de-
viance the E(r|T) values explain, analogous to explained vari-
ation in a standard linear model. Importantly, the new ratio

method performs extremely well, thereby allowing great sim-
plification from ecological, mathematical, and by extension,
computational standpoints. Although it includes only two to
four pollen types, it can provide as much or more explained
variation in the pollen-temperature relationship as a 64-type
“modern analog technique,” or MAT (∼80% explained varia-
tion in temperate northeast North America where it has been
applied; cf. the SOM for description of the MAT). Thus, the
new pollen ratio method represents an information-rich, taxo-
nomic “reduced space” data model that can be fruitfully, and
efficiently, employed in a BHM framework.

SUPPLEMENTAL MATERIALS

A Pollen ‘Forward’ Model to Enhance the Realism of the
BHM: Provided additional material describing the application

and testing of the binomial-logistic pollen data model out-
lined in Section 5.3. Section S.1: Specification, testing, and
estimation of the binomial-logistic GLM. Section S.2: Use
of the model in paleotemperature reconstruction and uncer-
tainty estimation. Section S.3: Technical note (regarding lan-
guages used in computation). Also provided Figures S1, S2,
S3. (supplement.pdf)
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Comment
Richard L. SMITH

The paper by Li, Nychka, and Ammann (2010) has exempli-
fied the power of Bayesian Hierarchical Models to solve funda-
mental problems in paleoclimatology. However, much can also
be learned by more elementary statistical methods. In this dis-
cussion, we use principal components analysis, regression, and
time series analysis, to reconstruct the temperature signal since
1400 based on tree rings data. Although the “hockey stick”
shape is less clear cut than in the original analysis of Mann,
Bradley, and Hughes (1998, 1999), there is still substantial ev-
idence that recent decades are among the warmest of the past
600 years.

The problem of paleoclimate reconstruction is a natural one
for the use of Bayesian hierarchical models (BHMs). As in most
BHMs, there is an unobserved “process” which is the true ob-
ject of interest—in this case, the true series of temperatures.
There are also various sources of “data” which are dependent on
the “process” with different levels of accuracy—observational
data, tree rings, boreholes, ice cores, etc. The problem of paleo-
climate reconstruction may be characterized as how to combine
the different data series to obtain the best reconstruction of the
unobserved process, with suitable measures of uncertainty. The
BHM technique is especially valuable for answering nonstan-
dard uncertainty questions, for instance, “what is the probabil-
ity that the 1990s were the warmest decade of the [1000–2000]
millennium?”

In an earlier paper, Li, Nychka, and Ammann (henceforth
LNA 2007) used an ensemble reconstruction, obtained via
a combination of linear regression, bootstrapping and cross-
validation, to reconstruct Northern Hemisphere average tem-

Richard L. Smith is Director, Statistical and Applied Mathematical Sci-
ences Institute, Research Triangle Park, NC 27709-4006, and Mark L.
Reed III Distinguished Professor, Department of Statistics and Operations Re-
search, University of North Carolina, Chapel Hill, NC 27599-3260 (E-mail:
rls@email.unc.edu). SAMSI is supported by the National Science Foundation,
grant DMS 0635449. I am grateful to Doug Nychka and Caspar Ammann for
making their data and programs available.

peratures back to 1000, using 14 proxy series first discussed in
Mann, Bradley, and Hughes (MBH 1999). Their results showed
that there is indeed a high probability that the 1990s were the
warmest decade of the millennium. The BHM technique has
since been taken up by other authors, such as Tingley and Huy-
bers (2010a, 2010b), Brynjarsdóttir and Berliner (2010), and
promises to be the method of choice for future statistical analy-
ses of paleoclimatic data.

In the paper under discussion, LNA (2010) have shown that it
is also possible to answer “design”-type questions using BHMs.
I believe that this is the logical next step in the scientific applica-
tion of BHMs to paleoclimatology, and the methodology they
have presented will play an important role in the selection of
proxies for future paleoclimatological studies. I commend their
contribution.

Although I fully support the further development of the BHM
approach, it seems to me there is still some merit in looking for
simpler statistical approaches, using methods that are routinely
taught in first-year graduate courses in statistics, and that can
(through the ready availability of the R programming language)
be easily adopted by paleoclimatologists without extensive sta-
tistical training. Indeed, much of the debate over the “hockey
stick curve” has focused on the correct use of elementary statis-
tical methods, in particular, the method of principal components
(PCs). For the remainder of this note, I aim to show how routine
application of PCs, regression, and time series analysis can be
used to resolve some issues that have caused much contention
in the literature.

BRIEF SUMMARY OF THE CONTROVERSY

The hockey stick curve, in the form that is currently debated,
was first constructed in two papers of MBH (1998, 1999). After
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compiling a large number of proxies, they computed what they
claimed was the first PC of the proxy series, with uncertainty
bands for the reconstruction of each year’s temperature mean.

Their analysis was criticized by a number of authors, but
most sharply by McIntyre and McKitrick (2003, 2005a, 2005b)
(henceforth, M&M). In particular, M&M (2005a) showed that
the version of PC analysis used by MBH was more or less the
following:

1. A data source was compiled that, for this discussion, is
taken as 70 tree-ring series for 1400–1980.

2. Each series was rescaled so that the mean was 0 and the
variance 1 over 1902–1980—the “calibration period” for
which real observational data was used.

3. For each series, a linear trend was fitted to 1902–1980,
and the series rescaled again by dividing by the standard
deviation of the residuals.

4. Based on the rescaled data matrix X, the singular value
decomposition X = UDVT was formed as in conventional
PC analysis (however, the X matrix has not been centered
over all the series, only over 1902–1980).

5. Based on the SVD, the first PC (PC1) was calculated.
6. Finally, PC1 was rescaled so that the mean was 0 and the

variance 1 over 1902–1980. This was the displayed result.

For the current discussion, I have reproduced these re-
sults using data and R code provided by Doug Nychka and
Caspar Ammann (http://www.image.ucar.edu/~nychka/Temp/
TreePC/ ). The basic dataset consists of reconstructed temper-
atures from 70 trees for 1400–1980, in the North American
International Tree Ring Data Base (ITRDB). In Figure 1, the
70 tree ring series have been plotted, after smoothing by apply-
ing a moving average filter with weights wi = (13 − |i|)/169,
i = −12,−11, . . . ,12, that is, a triangular window over the total
span of 25 years with weights summing to 1. This is intended
as a smooth representation of the underlying trend and will
be used for trend comparisons in the subsequent analysis. As
can be seen, there is little visual evidence of an overall upward
or downward trend. Figure 2 shows the MBH reconstruction
of the individual-year temperatures, together with a smoothed
trend computed by the same triangular window. This shows
the characteristic hockey stick shape, including a steady rise in
temperatures since 1850.

Figure 1. Reconstructed temperatures from 70 tree rings
(1400–1980) in the North American ITRDB dataset. Each series has
been smoothed using the 25-year triangular window described in the
text. The online version of this figure is in color.

Figure 2. The original temperature reconstruction of MBH (1999),
replotted for the present discussion, together with a smoothed trend
computed using the same triangular window. The online version of
this figure is in color.

Steps 2 and 3 of the above algorithm are nonstandard, since
conventional PC analysis centers the data over the whole time
period, not just part of it. In additional, conventional PC analy-
sis sometimes standardizes the individual series so that the
standard deviation is 1—the standardized and unstandardized
analyses are also commonly known as correlation-based and
covariance-based PC analysis. M&M (2005a) argued that the
version of PC analysis used by MBH can induce a spurious
“hockey stick” shape, a point they illustrated by using simu-
lations of red-noise time series with no trend to represent the
tree-ring series. In many cases, the simulated series combined
with the MBH algorithm resulted in a spurious hockey stick-
like curve for the trend. Instead, M&M argued for a conven-
tional PC analysis with centering over the whole time series.
As illustration, Figure 3 shows PC1 from a correlation-based
PC analysis, with the smooth trend using the same moving aver-
age smoother as previously. The output series has been rescaled
to have mean 0 and variance 1 over the 1902–1980 period, to
allow direct comparison with MBH. As noted by M&M, this
series does not support the notion that recent decades were sub-
stantially warmer than temperatures in earlier centuries.

In a report to the House of Representatives of the U.S.
Congress, Wegman, Scott, and Said (2006) confirmed the
M&M results and gave much additional discussion, generally
supporting the conclusion of M&M that there was no hockey
stick shape. At the same time, the National Research Council

Figure 3. The first principal component, computed from the tree
ring dataset using a conventional (correlation-based) PC decomposi-
tion, together with the smoothed trend. The online version of this fig-
ure is in color.

http://www.image.ucar.edu/~nychka/Temp/TreePC/
http://www.image.ucar.edu/~nychka/Temp/TreePC/
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Figure 4. The second principal component, computed as in Fig-
ure 3. The online version of this figure is in color.

commissioned a report, published as NRC (2006). They ac-
knowledged the high level of uncertainty in reconstructions of
medieval temperatures, but concluded that the balance of evi-
dence, from many different studies, still supported the overall
hockey stick shape of the temperature curve.

One criticism of the M&M analysis is their focus on PC1
as the main indicator of a signal in the series. M&M (2005b,
pp. 75–76) acknowledged this point, stating that a hockey stick
shape reappears in the second PC of a standardized analysis (see
Figure 4, where the 25-year smoother is also included), and the
fourth PC of an unstandardized analysis, but argued against this
interpretation, saying (with respect to the unstandardized analy-
sis) that MBH’s “conclusion about the uniqueness of the late
20th century climate hinges on the inclusion of a low-order PC
series that only accounts for 8% of the variance of one proxy
roster.” In contrast, Ammann and Wahl (2007), Wahl and Am-
mann (2007) argued for the “robustness” of the MBH results,
in particular the “convergence” of the reconstructed curves as
the number of PCs in the reconstruction increased, and that
this convergence holds regardless of whether the PCs are con-
structed using standardized series, unstandardized series, or the
MBH technique. However, they did not discuss the standard er-
ror of the reconstructed curve, nor provide a formal criterion for
selecting the number of PCs to include in the reconstruction.

PRINCIPAL COMPONENTS REGRESSION

Suppose we have observed temperatures yt for t = 1902, . . . ,

1980, and proxy series {xjt, j = 1, . . . ,q} (where, here, q = 70)
for t = 1400, . . . ,1980. A natural way to think about the paleo-
climate reconstruction problem is first to fit the regression

yt = α0 +
q∑

j=1

αjxjt + εt (1)

for 1902–1980, and then, having estimated coefficients α̂j, j =
0, . . . ,q, to apply the fitted regression curve, ŷt = α̂0 +∑q

j=1 α̂jxjt, to reconstruct the temperature curve prior to 1902.
Direct application of (1), however, is open to the objection

that the number of regressors (70) is very close to the num-
ber of data points used to fit the regression (79), creating po-
tentially serious overfitting problems. A standard method for
dealing with this problem is first to transform the covariates
{xjt, j = 1, . . . ,70} to PCs {ukt, k = 1, . . . ,70}, ordered by de-
creasing variance. Then, we fit the observed temperatures to a

subset of the PCs,

yt = β0 +
K∑

k=1

βkukt + εt, (2)

where K is to be determined. The argument for this is that with
moderate K, chosen to capture most of the variability in the
covariates, the right-hand side of (2) contains almost as much
information as the right hand side of (1), but with far fewer re-
gression coefficients to be estimated. For the moment, I assume
a conventional ordinary least squares (OLS) regression analy-
sis in which the εt are uncorrelated with mean 0 and common
unknown variance σ 2.

This method was applied with the observed series yt taken
as the “HADCRUT3” global temperature mean anomalies
of the Climate Research Unit of the University of East An-
glia (http://www.cru.uea.ac.uk/cru/data/ temperature). Based
on the PC regression, I compute the predicted temperature se-
ries ŷt = β̂0 + ∑K

k=1 β̂kukt, and also its smoothed version ỹt =∑12
i=−12 wiŷt−i. Noting that we can also write ỹt = ∑K

k=0 β̂kũkt

where ũkt is 1 for k = 0,
∑12

i=−12 wiuk,t−i for k = 1, . . . ,K,
the prediction intervals for ỹt can be computed by the stan-
dard formula given in regression textbooks. Therefore, we can
display the smoothed reconstructed curve ỹt, together with
100(1 −α)% prediction bounds for any α, pointwise for each t.
In the following examples, I have taken α = 0.1 to give 90%
prediction intervals.

Figure 5 shows the resulting reconstruction for K = 1,2,5,

10,20,50. The curve for K = 1 is flat, suggesting that the first
PC has very little predictive power. However, each of the re-
maining curves has a noticeable hockey stick shape. For K =
50, and to a lesser extent K = 20, the prediction intervals are
extremely narrow in the portion of the series with observational
data (1902–1980), a sure sign of overfitting. For K = 2,5,10,
however, the curves look very similar and there is no clear-cut
choice among them.

A more systematic comparison may be made by computing
various measures of fit. In comparing regression and/or time se-
ries models, three common criteria for selecting the best model
are the Akaike Information Criterion (AIC; Akaike 1973), the
Bayesian information criterion (BIC; Akaike 1978) and the
bias-corrected Akaike Information Criterion (AICC; Hurvich
and Tsai 1989). For the PC regression model with K up to 10,
but still for the moment without making any allowance for time
series autocorrelations, these criteria are listed in Table 1.

It can be seen that as K increases, each of AIC, BIC, AICC
drops sharply (indicating improved fit) at K = 2 and again at
K = 8. The minimum is at K = 9 for AIC and AICC and K = 2
for BIC: as typically happens, BIC chooses a more parsimo-
nious model.

The omission of autocorrelation from the foregoing analyses
is potentially a serious matter, since the width of the predic-
tion interval could be substantially larger if autocorrelation is
included. Therefore, I now extend the previous analysis to in-
clude a time series component.

The logical extension to the assumption that the errors εt in
(1) or (2) are independent is that they form an ARMA(p,q)

time series for suitable p and q (see, e.g., Brockwell and Davis
2003 for extensive discussion of ARMA modeling). The most

http://www.cru.uea.ac.uk/cru/data/temperature
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Figure 5. Six reconstructions of historical temperature anomalies, together with their smoothed trends and pointwise 90% prediction intervals
on the trends. The online version of this figure is in color.

powerful way to select a model is to treat all of K, p, and q
as undetermined model parameters, to perform a generalized
least squares (GLS) analysis, and to select K, p, and q to min-
imize one of AIC, BIC, or AICC. Unfortunately, this proce-
dure quickly produces unwieldy models and does not lead to a
clear-cut conclusion. For example, fitting models by minimiz-
ing AIC up to K = 9, p = 10, q = 5 produced the best model at
K = 8, p = 2, q = 5. These results were obtained by maximum

Table 1. Table of AIC, BIC, AICC values for OLS
regression without allowing for autocorrelation

K AIC BIC AICC

1 −40.4 −33.3 −40.1
2 −58.2 −48.7 −57.7
3 −58.7 −46.9 −57.9
4 −57.3 −43.0 −56.1
5 −55.4 −38.8 −53.8
6 −57.3 −38.4 −55.3
7 −58.1 −36.8 −55.5
8 −63.8 −40.1 −60.5
9 −66.4 −40.4 −62.5

10 −66.1 −37.7 −61.4

likelihood fitting using the arima command in R (R Core De-
velopment Team 2010), ignoring models for which the MLE
algorithm did not converge or for which the resulting model fit
violated the stationarity condition for the autoregressive part of
the model. However, the final model is hard to interpret with so
many parameters, and it seems probable that still higher-order
models would be obtained if larger values of K, p, q were per-
mitted. Similar results were obtained using BIC and AICC.

As an alternative to full GLS time series regression, there-
fore, I used the same OLS fits for the regression components
produced earlier, but selected the optimal ARMA(p,q) model
fitted to the residuals, and then recalculated the width of the
prediction intervals to take account of the autocorrelation. This
produced more easily interpretable results. For example, with
K = 2, the optimal ARMA model had p = 1, q = 2 when se-
lecting by AIC and p = 1, q = 0 when using BIC or AICC.
With K = 9, all three selection criteria resulted in AR(1) as
the optimal time series model—incidentally relevant to LNA
(2010), where they used AR(2) as the time series model for
residuals, though Dr. Li remarked in her oral presentation that
the AR(1) model appears equally suitable in practice.

For the three models just derived, the reconstructed curves,
with prediction interval bounds for the 25-year moving average,
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Figure 6. Reconstructed series with time series corrections: K = 2
PCs with AR(1) residuals. The solid curves represent the smoothed re-
constructed series with pointwise 90% prediction intervals. The dashed
curve at the right-hand end is the same smoother applied to the obser-
vational data points. The online version of this figure is in color.

are shown in Figures 6 through 8. Also shown on the plot are
the actual global mean temperatures for 1902–1980, and a 25-
year triangular moving average filter applied to those. The three
figures look very similar to each other, though the width of the
prediction intervals is about twice that in Figure 5. All three
confirm that the reconstructed smoothed temperature for prior
centuries was well below its value in recent decades.

DISCUSSION AND SUMMARY

This analysis has used principal components regression com-
bined with time series analysis of the residuals to reconstruct
the global mean temperature series back to 1400. I smoothed
the reconstructed series using a 25-year triangular moving av-
erage, and calculated 90% prediction intervals on the smoothed
reconstruction as a measure of uncertainty. Three standard sta-
tistical model selection criteria (AIC, BIC, and AICC) were
used to select the model orders K (number of PCs), p and q
(for the autoregressive and moving average components of the
time series model fitted to the residuals). Although these crite-
ria do not lead to clear-cut selection of the best model, the final
reconstructions do not appear to depend too sensitively on the
model selected. Taking into account the general desire in ap-
plied statistics for a parsimonious model, the model with K = 2
PCs and AR(1) residuals appears adequate.

The idea of PC regression as a technique in paleoclimate re-
construction is not new—for example, it was discussed in chap-

Figure 7. Reconstructed series with time series corrections: K = 2
PCs with ARMA(1,2) residuals. The online version of this figure is in
color.

Figure 8. Reconstructed series with time series corrections: K = 9
PCs with AR(1) residuals. The online version of this figure is in color.

ter 9 of NRC (2006)—but it does not appear to have been sys-
tematically developed.

The results support an overall conclusion that the tempera-
tures in recent decades have been higher than at any previous
time since 1400. On the other hand, none of the recent recon-
structions shows as sharp a hockey stick shape as the widely
reproduced figure 3(a) of MBH (1999), so in that respect, crit-
ics of the hockey stick are also partially vindicated by these
results.

I have confined this discussion to statistical aspects of the
reconstruction, not touching on the question of selecting trees
for the proxy series (extensively discussed by M&M, Wegman,
Scott, and Said and Ammann/Wahl) nor the apparent recent “di-
vergence” of the relationship between tree ring reconstructions
and measured temperatures (see, e.g., NRC 2006, pp. 48–52).
I regard these as part of the wider scientific debate about den-
droclimatology but not strictly part of the statistical discussion,
though it would be possible to apply the same methods as have
been given here to examine the sensitivity of the analysis to
different constructions of the proxy series or to different speci-
fications of the starting and ending points of the analysis.
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Rejoinder
Bo LI, Douglas W. NYCHKA, and Caspar M. AMMANN

Paleoclimate reconstruction provides a very good example
for the necessity of combining statistics with the geosciences
and obviously both areas benefit from this combination. The
“Climategate” review panel chaired by Lord Oxburgh con-
cluded that “It would be helpful for researchers to work more
closely with professional statisticians in future. This would en-
sure the best methods were used when analyzing the complex
and often ‘messy’ data on climate,” quoted from BBC news
(http://news.bbc.co.uk/2/hi/ science/nature/8618024.stm). In
our paper we provided a framework for the paleoclimate re-
construction to help more statisticians contribute to this area
and also to provide a clearer description of the statistical as-
sumptions that support a particular method. In this way we
hope that we have addressed needs highlighted by this recent
review panel. The key points from the three discussions are the
point out limitations of our analysis and also solutions for more
improving the reconstructions. We note that there is a consen-
sus among the discussants that the Bayesian hierarchical model
(BHM) approach is a positive contribution to paleoclimate and
the numerous constructive comments are much appreciated. We
also thank the discussants for sharing some new work in their
discussions on the spatial aspects of reconstructions and on bet-
ter models for linking proxies to climate variables. To keep
our response succinct we will not comment on this new work
except to acknowledge the value and innovativeness of these
extensions.

1. DESIGN OF THE EXPERIMENT

Cressie and Tingley (CT) examined our experiment and in-
terpreted our set up as having only one treatment—the BHM
applied to the dataset. Indeed, we do not compare this with other
methods of reconstruction. Our main interest was to understand
the information content of different kinds of climate proxies and
how this interacted with a process model. For that purpose, we
consider the combination of three factors of with/without forc-
ing covariates, with/without proxy noise and modeling T1/T.
In terms of experimental design language we have five blocks
comprising the different kinds of models and a 23 design for the

Bo Li is Assistant Professor, Department of Statistics, Purdue University,
West Lafayette, IN 47906 (E-mail: boli@stat.purdue.edu). Douglas W. Ny-
chka is Senior Scientist and Director of Institute for Mathematics Applied to
Geosciences (E-mail: nychka@ucar.edu) and Caspar M. Ammann is scien-
tist (E-mail: ammann@ucar.edu), National Center for Atmospheric Research
(NCAR), Boulder, CO 80307.

treatments. We accept CT’s criticism on the lack of replication.
To our knowledge, however, this climate model run is unique in
both its resolution and length. Adding in another climate model
simulation would be better described as creating another factor
for the experimental design rather than a replicate. Simulating a
sample (also termed an ensemble in the geosciences) of climate
model runs that reflect the model uncertainty and the variation
in response is a grand challenge not only for paleoclimate stud-
ies but also for projections of future climate change.

CT questioned why the “oracle” case is not always the best?
If forcings are not included the “oracle” is unanimously the best
in both measures. When forcings are included, the “oracle” is
sometimes slightly worse than the others. The most likely ex-
planation for this result is the sampling error due to considering
just one replication and this reinforces the point that we should
consider more than one climate model run for evaluating the
BHM approach.

2. REFINEMENT OF DATA MODELS

We agree that the forward models are unknown and much
more complex than our current models, which simply are linear
approximations and are not derived from physics. Regarding
the moving average calculated in the forward model for tree
rings, CT suggested to use the moving window as t − 10 to t
instead of the current t − 5 to t + 5. We agree that for a single
tree ring this does not make physical sense but could reflect a
composite of different trees or another form of annual climate
proxy. The “tree ring” proxy sited at 75◦N in our study was
actually intended to represent an ice-core based proxy that had
the same annual time scale information as a tree-ring proxy.

Both CT and Wahl, Schoelzel, and Tigrek (WST) suggested a
seasonal tree-growth model (Evans et al. 2006) as the future for-
ward model for tree rings. This is indeed a much more realistic
model to consider, but it requires several other climate inputs in-
cluding precipitation, transpiration, runoff, and solar radiation,
and it will introduce some nonlinear data models. Therefore, we
suspect a simpler version of this growth model might be more
useful in practice. WST have made impressive progress in de-
veloping a binomial-logistic generalized linear model as an ef-
ficient forward model for pollen and we look forward to these
components being incorporated into spatial reconstructions.
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CT raised the concern that the white noise was added onto
GCM before the forward matrices was applied is not consis-
tent with the models for tree rings (4.1) and pollen (4.2). Since
the transformer MD retains only high-frequency variability, the
white noise added to GCM temperature will be carried over to
the synthetic tree rings. Therefore, there is little effect to syn-
thetic tree rings whether the white noise is added before or after
the transformer is applied, and the AR(2) is used to model a
mixture of white and serially correlated noise. The additive er-
ror term in (4.2) serves an approximation to the well-known
dating error in pollen rather than for the purpose of modeling
the white noise.

As opposed to assuming known forward models, CT sug-
gested an approach to parametrize the unknown transforma-
tion matrices using MD for example. They proposed to have
Di(t) = μi + c1T(t − 5) + · · · + c11T(t + 5) and then estimate
the parameters with data. However, in order to keep the par-
simony, that model imposes a strong restriction that the rela-
tionship between any tree-ring and global temperatures share
the same slope parameters, which sounds a bit unrealistic as
implied in the “divergence” problem that CT mentioned in Sec-
tion 4.3 of their discussion. Their another suggestion of estimat-
ing transformation matrices by putting a prior on them and then
carrying out a sensitivity analysis is more general and an excel-
lent compromise between flexibility and controlling the number
of model parameters.

3. SPATIAL RECONSTRUCTION

CT has sketched the hierarchies and presented a space–time
random effects model that proposes nonseparable and nonsta-
tionary spatio-temporal covariances as expected over a global
spatial scale and a millennial temporal scale (Cressie, Shi, and
Kang 2010). This model also allows for fast computation of
iterations in MCMC by reducing the dimension of basis func-
tions, and is a promising, feasible approach to deal with data
over a large spatial scale. Besides, WST raised excellent points
that spatial climate information produce by AOGCMs can be
included in the process stage, and the spatial reconstruction
should be weighted to account for “modes” in the Earth sys-
tem with particular sensitivity for the entire earth. The spatial
network sensitivity and spatial network design for proxies men-
tioned in CT are definitely interesting research questions that
we should consider. In particular, what are the optimal loca-
tions to look for new proxies? Or, given all the available data,
which locations should be considered?

4. OTHER ISSUES WITH BHM MODELS

Responding to CT’s comments concerning the forcings, we
only introduced observational errors into the volcanic forcing
because this reflected our understanding that errors in the other

two forcings have much less impact. The discrepancy in dif-
ferent estimates of solar irradiance S only amounts to a dif-
ferent scaling, which will be absorbed into the parameter β2.
The greenhouse gas estimates are nearly flat prior to 1950s
and then afterwards are the direct measurements, therefore the
uncertainty in greenhouse gases are expected to be small and
thus negligible. CT suggested the modeling of measurement
errors in instrumental temperatures, motivated by the various
noises added to instrumental temperatures in the post process-
ing (Brohan et al. 2006). We find this a perceptive comment. In
this sense the instrumental record is just another climate proxy,
one that we hope has a small measurement error and a simple
forward model! Including the instrumental as another observa-
tional equation is an elegant way to deal with all the observed
information in a unified way.

Due to the fact that the radiative forcing associated with CO2
increases as the log of the mixing ratio and also the form of
multiplicative error in volcanism, CT suggested a new linear
process model:

T = β01 + β1S + β2 log(V0) + log(C) + ε.

CT also suggested to investigate the role of each forcings as our
systematic evaluation for each proxy. Both are valuable sugges-
tions that are worthwhile to try out in future studies.

Considering the relatively extensive statistical training re-
quired to use the BHM and for convenience of paleoclimatolo-
gists, Smith discussed the efficiency and benefits of using prin-
cipal components regression combined with time series analy-
sis. We agree that with simple data structure, regression tech-
niques can be very useful and much appreciated for their merits
of being easy to understand and implement, but it is also worth
mentioning that those techniques may suffer from the attenu-
ation effects caused by errors-in-variables (Ammann, Genton
and Li 2010). A careful examination of assumptions made for
regressions and appropriate corrections can perhaps improve
those methods.

In summary, the discussions have sketched some important
improvements to our work and future directions. We are glad
our paper has initiated these valuable responses.
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