NOAA NCDC National Climatic Data Center
NOAA Paleoclimatology Program, NCDC Paleoclimatology Branch  
Paleoclimatology Navigation Bar Bookmark and Share
NOAA National Environmental Satellite, Data, and Information Service National Oceanic and Atmospheric Administration NOAA National Climatic Data Center U.S. Department of Commerce Paleo Home Data Paleo Projects Paleo Perspectives Education and Outreach About Paleo Program Site Map

Brief Introduction to the Geothermal Approach of Climate Reconstruction

One of the most important components of climate change is the variation of temperature at the Earth's surface. Because temperature changes at the surface affect the distribution of temperature in the subsurface, ground temperatures comprise an archive of signal of past climate.

How Borehole Temperatures Can Be Related to Climate Changes

borehole temperature relating to climate change image

Thermal regime at shallow depths of the crust is controlled by the temperature condition at the surface and the heat flowing from deeper part of the Earth. In an idealized homogeneous crust, if the surface temperature is steady, the distribution of ground temperature is a linear function of depth. However, if the surface temperature changes with time, the ground temperature will depart from the linear distribution which is governed by heat flow (q) and thermal conductivity (k). A progressive cooling at the surface will cool down the rocks near to the surface, increase the thermal gradient at shallow depths, and lead to a temperature profile with curvature like the one shown in green in the illustration above. A progressive warming, on the other hand should be responsible for a temperature profile with smaller even negative thermal gradients at shallower depths like the one shown in red. If the surface temperature oscillates with time, oscillations in the ground temperature will follow. The magnitude of the departure of ground temperature from its undisturbed steady state is related to the amplitude of the surface temperature variation, and the depth to which disturbances to the steady state temperature can be measured is related to the timing of the original temperature change at the surface. A ground surface temperature history is therefore recorded in the subsurface. By careful analysis of the variation of temperature with depth, one can reconstruct the past fluctuation at the Earth's surface.

Advantages of the Geothermal Approach in Climate Studies

Back to Borehole Temperatures and Climate Reconstruction Homepage

Dividing Line
Privacy Policy information Open Access Climate Data Policy link USA logo Disclaimer information
Dividing Line
Downloaded Tuesday, 17-Jan-2017 20:42:00 EST
Last Updated Wednesday, 20-Aug-2008 11:22:25 EDT by
Please see the Paleoclimatology Contact Page or the NCDC Contact Page if you have questions or comments.