CRN logo CRN logo
Climate Monitoring Principles

The National Research Council (NRC 1999) recommended that the following ten climate monitoring principles, proposed by Karl et al. (1995), should be applied to climate monitoring systems:

  1. Management of Network Change: Assess how and the extent to which a proposed change could influence the existing and future climatology obtainable from the system, particularly with respect to climate variability and change. Changes in observing times will adversely affect time series. Without adequate transfer functions, spatial changes and spatially dependent changes will adversely affect the mapping of climatic elements.
  2. Parallel Testing: Operate the old system simultaneously with the replacement system over a sufficiently long time period to observe the behavior of the two systems over the full range of variation of the climate variable observed. This testing should allow the derivation of a transfer function to convert between climatic data taken before and after the change. When the observing system is of sufficient scope and importance, the results of parallel testing should be documented in peer-reviewed literature.
  3. Meta Data: Fully document each observing system and its operating procedures. This is particularly important immediately prior to and following any contemplated change. Relevant information includes: instruments, instrument sampling time, calibration, validation, station location, exposure, local environmental conditions, and other platform specifics that could influence the data history. The recording should be a mandatory part of the observing routine and should be archived with the original data. Algorithms used to process observations need proper documentation. Documentation of changes and improvements in the algorithms should be carried along with the data throughout the data archiving process.
  4. Data Quality and Continuity: Assess data quality and homogeneity as a part of routine operating procedures. This assessment should focus on the requirements for measuring climate variability and change, including routine evaluation of the long-term, high-resolution data capable of revealing and documenting important extreme weather events.
  5. Integrated Environmental Assessment: Anticipate the use of data in the development of environmental assessments, particularly those pertaining to climate variability and change, as a part of a climate observing system's strategic plan. National climate assessments and international assessments (e.g., international ozone or IPCC) are critical to evaluating and maintaining overall consistency of climate data sets. A system's participation in an integrated environmental monitoring program can also be quite beneficial for maintaining climate relevancy. Time series of data achieve value only with regular scientific analysis.
  6. Historical Significance: Maintain operation of observing systems that have provided homogeneous data sets over a period of many decades to a century or more. A list of protected sites within each major observing system should be developed, based on their prioritized contribution to documenting the long-term climate record.
  7. Complementary Data: Give the highest priority in the design and implementation of new sites or instrumentation within an observing system to data-poor regions, poorly observed variables, regions sensitive to change, and key measurements with inadequate temporal resolution. Data sets archived in non-electronic format should be converted for efficient electronic access.
  8. Climate Requirements: Give network designers, operators, and instrument engineers climate monitoring requirements at the outset of network design. Instruments must have adequate accuracy with biases sufficiently small to resolve climate variations and changes of primary interest. Modeling and theoretical studies must identify spatial and temporal resolution requirements.
  9. Continuity of Purpose: Maintain a stable, long-term commitment to these observations, and develop a clear transition plan from serving research needs to serving operational purposes.
  10. Data and Meta Data Access: Develop data management systems that facilitate access, use, and interpretation of data and data products by users. Freedom of access, low cost mechanisms that facilitate use (directories, catalogs, browse capabilities, availability of meta data on station histories, algorithm accessibility and documentation, etc.), and quality control should be an integral part of data management. International cooperation is critical for successful data management.

Karl, T.R., V.E. Derr, D.R. Easterling, C.K. Folland, D.J. Hoffman, S. Levitus, N.Nicholls, D.E. Parker, and G.W. Withee, 1995: Critical issues for long-term climate monitoring. Climatic Change, 31, 185-221.

National Research Council (NRC), 1999: Adequacy of Climate Observing Systems, National Academy Press, Washington, D.C.