Explanation of the 500 mb Flow

The sun is the primary source of earth's weather, by causing differential heating between the tropics and polar regions. This sets up a state of motion in which the atmosphere is always trying to balance itself: the warm air moves poleward in patterns called ridges, and the cooler air moves equatorward in patterns called troughs. In the mid-latitudes (30 to 60 degrees North and South) the rotation of the earth generally causes weather systems to move eastward.

This dynamic process is best seen on the 500-millibar chart. This chart shows the circulation of the atmosphere at roughly 18,000 feet (5486 meters) and is based on soundings taken by weather balloon on a twice-daily basis. These soundings are then plotted on a map and the lines of equal pressure are connected. Ridges extend toward the pole, are usually associated with warm, dry weather, and have the general shape of an upside down "U" in the Northern Hemisphere. Troughs extend toward the equator, are usually associated with cool, wet weather, and have the general shape of a "U" in the Northern Hemisphere. The area of greatest surface instability (thunderstorms) is usually immediately ahead of (to the right of) the 500 mb trough.


Temperature Variability

Monthly mean temperature maps show the average conditions during a month, but give no information about changes that occurred within the month. A measure of the day-to-day variability of temperature provides some insight into how temperatures changed during the month. Daily temperature variability is highly dependent on the weather systems and air masses that affect a region.

The daily difference in temperature may be lower in areas where a single air mass remains dominant. This can happen under a stable circulation pattern (at the jet stream level) that locks an air mass in place--for example, a strong zonal flow, or a stable ridge/trough pattern. The daily difference in temperature will be higher in areas that experience a greater frequency of frontal passages as cold arctic air moves southward and warmer, maritime air moves northward. This will happen under a variable circulation pattern, or along a stable storm track.

To quantify the variability in daily temperature, the average daily differences in temperature for the current month have been expressed as a ratio of the normal (1961-90) average daily difference. The magnitude of this ratio is expressed by the intensity of the shading on the map. Green shading indicates that daily variability in temperature was less than normal and may be a consequence of a dominant air mass. Red shading indicates that daily temperature variability was greater than normal reflecting a more frequent passage of differing air masses.


National Temperature Index

The national temperature index expresses temperature departure from the 60-year mean in terms of standard deviations. Each year's value is computed by standardizing the temperature for each of 344 climate divisions in the U.S. by using their 1931-90 mean and standard deviation, then weighting these divisional values by area. These area-weighted Tvalues are then normalized over the period of record. Positive values indicate warmer than the mean and negative values indicate cooler than the mean.


National Precipitation Index

The national precipitation index expresses precipitation departure from the 60-year mean in terms of standard deviations. Each year's value is computed by standardizing the annual precipitation in each of 344 climate divisions across the U.S. using the gamma distribution over the 1931-90 period. The gamma statistical distribution takes into account heavy precipitation years and extremely dry years in the historical record (in mathematical parlance, "a zero-bounded skewed distribution"). These gamma-standardized divisional values are then weighted by area and averaged to determine a national standardized value for each year. These national values are normalized over the period of record. Negative values are drier and positive values are wetter than the mean. This index gives a more accurate indication of how precipitation across the country compares to the local normal (60-year average) climate.

Temperature and Precipitation Statewide Ranks

The number within the state represents that state’s ranking for the given period, compared with all other such periods for that state for the 106 year period of record. The number 106 equals the warmest or wettest; the number 1 equals the coolest or driest. For example, if a state has number 102, this means that out of 106 years, this stated period ranked 102 out of 106, or fifth warmest or wettest for that state. If a state has number 15, this means that out of 106 years, this stated period ranked 15 out of 106, or fifteenth coolest or driest.